Bernsteinstephens6201
During leachate treatment, molecular information regarding the completely removed, partially removed, less-reactive, increased, and produced parts of dissolved organic matter (DOM) remains unknown. This study applied ESI FT-ICR MS to investigate the transformation characteristics of leachate nanofiltration concentrate (NFC) DOM during a combined flocculation-O3/H2O2 process. The NFC contained 5069 compounds in four main classes (CHO, CHON, CHOS, and CHONS compounds). The DOM number decreased to 4489 during flocculation and to 2903 after the O3/H2O2 process. During flocculation, the completely and partially removed DOM was mainly low-oxygen unsaturated and phenolic compounds. Saturated DOM was produced and remained in the flocculated effluent. During the O3/H2O2 process, the completely and partially removed DOM were mainly low-oxygen unsaturated and phenolic compounds that were mainly in a reduced state. Flocculation can remove many (condensed) aromatic compounds, and methylation and hydrogenation reactions occurred during flocculation. In the O3/H2O2 process, dearomatization, demethylation, carboxylation, and carbonylation reactions further achieved the degradation of DOM that was resistant to flocculation. Overall, the combined flocculation-O3/H2O2 process collectively eliminated a broader range of DOM than the single processes could achieve. The results of this study provide an in-depth understanding of DOM transformation in an NFC treatment.In this study, the UVA (Ultraviolet A) drinking water disinfection was promoted by electrolysis. The influences of the UVA, electrolysis current, bubbling and temperature were investigated. The disinfection mechanisms and bacterial reactivation had been studied. The results revealed that the treatment time needed to reach the DL (detection limit, about 5.4 log removal) was shortened from 180 to 80 min by the electrolysis. The total electricity consumption decreased from about 126-57.0 kJ/L. Compared with increasing the UVA irradiation, increasing the electrolysis current in a certain range was more preferred to improve the disinfection rate. Oxygen bubbling or higher temperature could enhance the E. coli inactivation. The quenching experiment and EPR (Electron paramagnetic resonance) detection confirmed that ROSs (1O2, ·O2- and ·OH) played important roles for the disinfection. Compared with the treatment with UVA alone, the cell membrane damage was more severe by the promoting method. In addition to the dramatically reduced enzyme activity, the synergistic process degraded most of the bacterial genomic DNA, and the bacteria were completely killed. DL-Buthionine-Sulfoximine inhibitor Therefore, hybrid with electrolysis is a better way for the application of the UVA-LED disinfection.Phosphate is ubiquitous in the environment and can affect the transport of heavy metals in the subsurface systems. In this study, column experiments were conducted to systematically evaluate the effects of phosphate on the transport of Cd in natural soils (RS, BS) under different ionic strength (IS) conditions. The presence of phosphate significantly retarded the transport of Cd in the soils. The extent of retardation was closely associated with phosphate concentrations, IS and soil properties. Increasing phosphate adsorption induced more negative surface charges on soils, thereby contributing to greater retention of Cd through electrostatic attraction. In contrast, higher IS not only promoted mobility of Cd, but also reduced the retardation effect of phosphate on Cd transport in soils. Moreover, higher Fe/Al oxides contents in RS exhibited a more pronounced effect of phosphate on Cd retardation. Our results indicated that electrostatic interaction was the predominant mechanism controlling co-transport of Cd with phosphate, but no ternary surface complexes was observed in the Cd LIII-edge XANES spectra. Our findings highlight the critical role of phosphate in retarding Cd transport in natural soils, which should be considered in assessing environmental risks of heavy metals in the subsurface.It is urgent to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge (TDS) before its final deposal due to their recalcitrant nature and generation of toxic byproducts during TDS treatment. In this study, an electrochemical Fe2+-activated peroxymonosulfate (PMS) oxidation process for removing 16 priority PAHs from real TDS was firstly investigated. The results showed that the removal efficiency of the ∑16PAHs in TDS was positively correlated to the concentration of Fe2+ released from sacrificial iron anode and the concentration of electroregenerated Fe2+ in the cathode by the reduction of Fe3+ within the applied voltage range of 3-7 V, but a higher voltage of 10 V did not lead to further improvement in ∑16PAHs removal due to the radical scavenging reaction resulted from the excessive accumulation of Fe2+. 64.7% and 16.1% of the ∑16PAHs were removed in the anodic and cathodic chamber under the optimum reaction conditions of 400 mg/g PMS/VSS, pH 3 and applied voltage 7 V, respectively. low-ring PAHs were preferentially degraded compared to high-ring PAHs. The O⋅Hplayed a major role while SO4⋅-had a minor role in PAHs degradation in TDS. The intracellular PAHs released from cracked sludge cells were found to undergo further degradation under free radical attack.Black phosphorus (BP), one rising star of two-dimensional (2D) materials, has showcased a huge capability for ppb-level NO2 detection. However, sluggish reaction kinetics and fragile stability frustrate its further application. In this regard, for the first time we prepared Ag nanoparticles modified BP nanosheets as the sensing layer via one feasible method to recognize trace NO2 at room temperature. With respect to individual BP, the composition-optimized BP-Ag nanocomposites (BP-Ag-1 sensor) achieved a favorable performance primarily in terms of boosted response (39.9% vs. 11.8%, 100 ppb NO2), accelerated response speed (190 s vs. 486 s, 100 ppb NO2) and strengthened operation stability, together with ultralow theoretical detection limit of 0.25 ppb. Furthermore, a protection layer comprised of polylactic acid (PLA) was anchored onto the surface of BP-Ag-1 sensor to keep the water molecules physically from the sensing layer and retain a distinguishable signal toward trace NO2 at high moisture environments. The introduction of Ag and PLA separately reduced the lone electron pairs from P atoms and suppressed the water penetration into the BP film, thereby offering an alternative way to passivate BP for its optoelectronic applications in the future.Cadmium (Cd) pollution in croplands is a global environmental problem. Measures to improve the tolerance of sensitive crops and reduce pollutant absorption and accumulation are needed in contaminated agricultural areas, and inoculation with rhizosphere microorganisms to regulate plant resistance and heavy metal transport can provide an effective solution. A pot experiment was conducted to analyse the impact of arbuscular mycorrhizal fungi (AMF) on alfalfa oxidase activity, heavy metal resistance genes and transport proteins, metabolism, and other biochemical regulation mechanisms that lead to complexation, compartmentalisation, efflux, enrichment, and antioxidant detoxification pathways. The AMF reduced shoot and protoplasm Cd inflow, and promoted organic compound production (e.g., by upregulating HM-Res4 for 1.2 times), to complex with Cd, reducing its biological toxicity. The AMF increased the ROS scavenging efficiency and osmotic regulatory substance content of the alfalfa plants, reduced oxidative stress (ROS dereased), and maintained homeostasis. It also alleviated Cd inhibition of photosynthetic electron transport, tricarboxylic acid circulation, and nitrogen assimilation. These AMF effects improved leaf and root biomass by 43.87% and 59.71% and facilitated recovery of a conservative root economic strategy. It is speculated that AMF induces the resistance signal switch by regulating the negative feedback regulation mode of indole acetic acid upward transport and methyl jasmonate downward transmission in plants.Photocatalysis is believed to be an important way of reducing NO pollutant in air and the facet engineering of semiconducting oxides could enhance the efficiency of the photocatalysis. ZnO nanoparticles with different exposed crystalline facets were successfully synthesized using a hydrothermal method and their photocatalytic degradation towards NO was investigated. The crystals from ZnCl2 precursor were hexagonal mesoporous ones with exposed (0002) facet, while those from zinc acetate were in the form of flakes or wheat ears with enhanced exposure of (101(-)1) facet. Calcination in air imparted an enhanced the textural coefficient of the orientated facets as well as the oxygen defects. The nanocrystals with enhanced (0002) facet and lower flat-band energy did better in photoelectrochemical water-oxidation than those with exposed (101(-)1) facet that showed superior photocatalytic activity (approaching 76.7 ± 0.6% under 365 nm photons) for NO oxidation. According to theoretical calculations, (101(-)1) facet with O termination showed much higher affinity to NO molecules than other configurations, and the oxygen vacancy in ZnO played an minor role in the photocatalytic oxidation of NO. A high quantum efficiency approaching 97.5 ± 1.4% under 275 nm photons was obtained for the ZnO crystals from zinc acetate with mixed (0002) and (101(-)1) facets. This research explores the special characteristics of ZnO with different exposed facets and is important for the future design of highly efficient photocatalyst for hazardous material removal.Frequent oil-spill accidents have posed serious threats to ecosystem balance and the efficiency of resources use. Hydrophobic adsorbents that can adsorb and recover oil without causing secondary pollution are ideal candidates for the remediation of oil contamination in water. However, these composites are inefficient for crude oil-spills cleanup because crude oil has low liquidity of at room temperature. Increasing the temperature can effectively enhance the flowability of crude oil. To achieve efficient crude-oil heating and removal in situ, wood aerogels were immersed in Ti3C2Tx suspensions and then coated with polydimethylsiloxane (PDMS) to obtain a solar-heated adsorbent (PT-WA). The prepared PT-WA exhibits super-hydrophobicity (water contact angle 154° ± 2°), mechanical robustness (withstanding 20 loading-unloading cycles under 50% strain without structural damage), strong solar absorption, and favorable photothermal-conversion capability (rising to ~85 °C within 90 s under 1.5 sun). Owing to these advantages, PT-WA is an effective adsorbent for crude oil cleanup. In addition, a 'self-heating crude oil collector' was assembled for the fast adsorption and restoration of crude oil from the water surface. This solar-assisted self-heating sorbent offers a competitive platform for the cleanup and recycling of viscous crude oil spills.Antibiotic resistance genes (ARGs) pollution has been considered as one of the most significant emerging environmental and health challenges in the 21st century, many efforts have been paid to control the proliferation and dissemination of ARGs in the environment. Among them, the biochar performs a positive effect in reducing the abundance of ARGs during different environmental governance processes and has shown great application prospects in controlling the ARGs. Although there are increasing studies on employing biochar to control ARGs, there is still a lack of review paper on this hotspot. In this review, firstly, the applications of biochar to control ARGs in different environmental governance processes were summarized. Secondly, the processes and mechanisms of ARGs removal promoted by biochar were proposed and discussed. Then, the effects of biochar properties on ARGs removal were highlighted. Finally, the future prospects and challenges of using biochar to control ARGs were proposed. It is hoped that this review could provide some new guidance for the further research of this field.