Bernardbryan1399

Z Iurium Wiki

Clostridium perfringens (CP) is the etiologic agent of necrotic enteritis (NE) in broiler chickens that is responsible for massive economic losses in the poultry industry in response to voluntary reduction and withdrawal of antibiotic growth promoters. Large variations exist in the CP isolates in inducing intestinal NE lesions. However, limited information is available on CP isolate genetics in inducing NE with other predisposing factors. This study investigated the ability of five CP isolates from different sources to influence NE pathogenesis by using an Eimeria maxima (EM) coinfection NE model Str.13 (from soil), LLY_N11 (healthy chicken intestine), SM101 (food poisoning), Del1 (netB+tpeL-) and LLY_Tpel17 (netB+tpeL+) for NE-afflicted chickens. The 2-wk-old broiler chickens were preinfected with EM (5 × 103 oocysts) followed by CP infection (around 1 × 109 colony-forming units per chicken). The group of the LLY_Tpel17 isolate with EM coinfection had 25% mortality. BLU-667 No mortality was observed in the groups infected with EM alone, all CP alone, or dual infections of EM/other CP isolates. In this model of EM/CP coinfections, the relative percentages of body weight gain showed statistically significant decreases in all EM/CP groups except the EM/SM101 group when compared with the sham control group. Evident gut lesions were only observed in the three groups of EM/LLY_N11, EM/Del1, and EM/LLY_Tpel17, all of which possessed an essential NE pathogenesis locus in their genomes. Our studies indicate that LLY_Tpel17 is highly pathogenic to induce severe gut lesions and would be a good CP challenge strain for studies investigating pathogenesis and evaluating the protection efficacy for antibiotic alternative approaches.Necrotic enteritis (NE) is a common and costly disease of poultry caused by virulent toxigenic strains of Clostridium perfringens. Although the importance of trace minerals for intestinal integrity and health is well documented, there is little information on their role in ameliorating the effects of NE. The two studies reported here examined the effects of replacing a portion of the dietary zinc (Zn), copper (Cu), and manganese (Mn) supplied as sulfates in the control diets with metal-amino acid-complexed minerals in a NE-challenge model consisting of coccidiosis and Clostridium perfringens. In a 28-day battery study, the treatments were the following (1) no additional Zn or Mn, unchallenged (negative control); (2) no added Zn or Mn, challenged (positive control); (3) added ZnSO4 and MnSO4 at 100 ppm each, challenged; (4) additional ZnSO4 at 60 ppm, Availa-Zn at 40 ppm (Low), and MnSO4 at 100 ppm, challenged; (5) added ZnSO4 at 60 ppm, Availa-Zn at 60 ppm (high), and MnSO4 at 100 ppm, challenged; and (6) add 100, 100, and 20 ppm, respectively (Zoetis, Inc., Kalamazoo, MI). None of the treatments reduced lesion scores. The Availa-Zn and Availa-Zn/Mn had lower mortality than the sulfate-supplemented feed, whereas Availa-Zn/Cu and bacitracin methylene disalicylate were intermediate and did not differ from the other groups. Considering both trials together, and by using NE mortality as the discriminating factor, we found that adding Zn and Mn exceeding National Research Council requirements reduced NE-associated mortality, and in the floor pen study, complexed Zn and complexed Zn plus Mn appeared to be superior to sulfates.Marek's disease (MD) is an oncogenic, lymphoproliferative, and highly contagious disease of chickens. Its etiologic agent is the alphaherpesvirus Marek's disease virus (MDV, Gallid alphaherpesvirus 2), and it is a chronic and ubiquitous problem for the poultry industry with significant economic impact in the United States and worldwide. We have previously demonstrated that MDV attenuated by dicodon deoptimization of the UL54 gene results in reduced gene product accumulation in vitro, with reduced viral genome copy number upon infection and reduced atrophy of bursa and thymus in vivo as well. In this report we detail our attempts to use the same attenuation strategy on a meq-deleted MDV mutant, rMd5B40ΔMeq. Unlike the wild-type rMd5B40 virus the rMd5B40ΔMeq is no longer oncogenic, but infected birds experience an unacceptable amount of bursa and thymus atrophy (BTA). We produced two meq-deleted MDV recombinants with a dicodon-deoptimized UL54 (rMd5B40ΔMeq/UL54deop1 and -deop2) and tested their tendency to cause BTA and to serve as a protective vaccine. We found that, although dicodon deoptimization of the UL54 gene results in a virus that spares the infected animal from atrophy of the bursa and thymus, the meq-deleted UL54-deoptimized recombinant is also less protective than the meq-deleted virus without UL54 deoptimization, the HVT + SB1 combination vaccine, or the Rispens (CVI988) vaccine.Necrotic enteritis (NE) is an important enteric disease affecting a wide variety of avian species, including poultry, caused by Clostridium perfringens type G and, rarely, type C. Significant economic losses can result from elevated mortality rates and poor performance, such as decreased weight gain associated with intestinal damage and impaired absorption of nutrients. Additional losses can result from elevated condemnation at the processing plant because of a high incidence of cholangiohepatitis. Nonenteric lesions associated with NE have been rarely reported. This paper describes uncommon presentations of NE in commercial chickens received by the California Animal Health and Food Safety Laboratory (Turlock and Tulare branches) between 2009 and 2018. Overall, extraintestinal lesions associated with C. perfringens were diagnosed in 25 cases of NE involving commercial broiler chickens. The extraintestinal sites most commonly affected included liver, followed by gizzard, bursa of Fabricius, gall bladder, and spleen. The etiology of these lesions, C. perfringens, was confirmed from a combination of gross, bacteriologic, microscopic, and immunohistochemical findings. The most common predisposing factors for NE identified were coccidiosis (56%, 14/25) and immunosuppressive disease agents, including infectious bursal disease virus (16%, 4/25) and fowl adenovirus group 1 (4%, 1/25). Additionally, four cases (16%) had microscopic lesions compatible with cystic enteritis, probably of viral etiology. This study describes the incidence of extraintestinal lesions of NE in chickens, underlying the role of enteric disorders and immunosuppression as major predisposing factors for the development of NE.

Autoři článku: Bernardbryan1399 (Hartvigsen Sheridan)