Bermanbjerre7359

Z Iurium Wiki

swabs.Hexagonal boron nitride (h-BN) has been used as adsorbent for many chemical applications. The doping strategy is an efficient way to enhance the adsorptive capacity. In the present work, the F-doped h-BN material was investigated by density functional theory (DFT). Five possible F doping h-BNF adsorbents were firstly considered. Results show that only the F_e_B and F_t_B models are thermodynamically favorable. The adsorptive energies of DBT for these five h-BNF materials are all enhanced as compared to the pristine h-BN. Then 2F doping h-BNF adsorbents were also explored. Results show that the combinations of F_e_B and F_t_B are still thermodynamically favorable. Moreover, adsorbents which contain F_t_B exhibits better adsorptive performance, especially the combination of F_t_B + F_t_B. Last, several quantum analysis schemes have been employed to analyze the interaction nature between h-BNF and DBT. Results show that F⋯H-C hydrogen bond, the π-π interaction, and strong electrostatic F⋯S-C interaction plays important roles during adsorptive desulfurization (ADS) process. This work proposed a promising strategy to enhance the capacity of ADS.Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to reduce pain. These target cyclooxygenase (COX) enzymes which produce inflammatory mediators. Adverse effects associated with the use of traditional NSAIDs have led to a rise in the development of alternative therapies. see more Derived from Olea Europaea, olive oil is a main component of the Mediterranean diet, containing phenolic compounds that contribute to its antioxidant and anti-inflammatory properties. It has previously been found that oleocanthal, a phenolic compound derived from the olive, had similar effects to ibuprofen, a commonly used NSAID. There is an abundance of olive phenolic compounds that have yet to be investigated for their anti-inflammatory properties. In this study, it was sought to identify potential olive-derived compounds with the ability to inhibit COX enzymes, and study the mechanisms using in silico approaches. Molecular docking was employed to determine the COX inhibitory potential of an olive phenolic compound library. From docking, it was determined that 1-oleyltyrosol (1OL) and ligstroside derivative 2 (LG2) demonstrated the greatest binding affinity to both COX-1 and COX-2. Interactions with these compounds were further examined using molecular dynamics simulations. The residue contributions to binding free energy were computed using Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) methods, revealing that residues Leu93, Val116, Leu352, and Ala527 in COX-1 and COX-2 were key determinants of potential inhibition. Along with part 2 of this study, this work aims to identify and characterise novel phenolic compounds which may possess COX inhibitory properties.The molecular mechanism of the reaction of (E)-1,1,1-trifluoro-3-nitrobut-2-ene 1 with 3,3-dimethyl-2-morpholinobutene 2 has been studied within the Molecular Electron Density Theory (MEDT). This theoretical study confirm the possibility of the formation of zwitterionic structures in the first reaction stage. Interestingly, that localized zwitterions are however not common intermediates for identified in the postreaction mixture products. The further Bonding Evolution Theory (BET) study show, that the key, HDA reaction takes place in one-step but in a non-concerted manner since three stages are clearly identified. First the C5-C6 double bond breaks, then the C1-C2 bond breaks, and in the last phase we observed the formation of the C1-C6 single bond and V(C2) and V' (C2) pseudoradical centers in Z1 molecule. In turn, the molecular mechanism of the conversion of zwitterion Z1 to product 3 can be divided also in three groups in which we observed the disappearance of the two pseudoradical centers and formation O4-C5 single and C3-N3 double bonds, respectively.Currently, only three molecules, flutemetamol, florbetaben and florbetapir, have been approved for clinical use towards the definitive diagnosis of Alzheimer's disease (AD). Despite the clinically approved drugs' advantages, there still exists a need for new diagnostic molecules with improved properties (physicochemical and pharmacokinetic) in comparison to the current molecules in clinical use and research. In this work, we report a pharmacophore model and a quantitative structure activity relationship (QSAR) model, constructed from a series of 166 amyloid beta diagnostic compounds (targeting Alzheimer's disease) with the purpose of identifying functional groups influencing and predicting bioactivity. Subsequently, pharmacophore based virtual screening and QSAR predictions were used to identify new amyloid beta diagnostic molecules. In addition, docking and molecular dynamics simulations were conducted to explore the type and nature of interactions required for ligands to bind effectively in the binding regif information that can be useful in future research towards identifying and design of new amyloid diagnostic molecules. The pharmacophore presented here can be used to filter independent databases to identify new structurally related molecules with improved activity whereas the QSAR model can be useful in predicting bioactivities of the predicted hits.Leaf angle is mainly determined by the lamina joint (LJ) and contributes to ideal crop architecture for high yield. Here, we dissected five successive stages with distinct cytological features of LJs spanning organogenesis to leaf angle formation and obtained the underlying stage-specific mRNAs and small RNAs, which well explained the cytological dynamics during LJ organogenesis and leaf angle plasticity. Combining the gene coexpression correlation with high-throughput promoter analysis, we identified a set of transcription factors (TFs) determining the stage- and/or cytological structure-specific profiles. The functional studies of these TFs demonstrated that cytological dynamics determined leaf angle and that the knockout rice of these TFs with erect leaves significantly enhanced yield by maintaining the proper tiller number under dense planting. This work revealed the high-resolution mechanisms of how the cytological dynamics of LJ determined leaf erectness and served as a valuable resource to remodel rice architecture for high yield by controlling population density.

Autoři článku: Bermanbjerre7359 (Loomis Morsing)