Bergmannslaughter4510
We aimed to identify the immunoregulatory role of the cyclin-dependent kinase inhibitor p21 in the homeostasis of mandibular condylar cartilage affected by mechanical stress.
Ten C57BL/6 wild-type (WT) and ten p21
mice aged 8 weeks were divided into the untreated and treated groups. In the treated groups, mechanical stress was applied to the temporomandibular joint (TMJ) through forced mouth opening for 3 hr/day for 7 days. The dissected TMJs were assessed using micro-CT, histology, and immunohistochemistry.
Treated p21
condyles with mechanical stress revealed more severe subchondral bone destruction, with thinner cartilage layers and smaller proteoglycan area relative to treated WT condyles; untreated WT and p21
condyles had smoother surfaces. Immunohistochemistry revealed significant increases in the numbers of caspase-3, interleukin-1β, matrix metalloprotease (MMP)-9, and MMP-13 positive cells, and few aggrecan positive cells, in treated p21
than in treated WT samples. Moreover, the number of TUNEL positive cells markedly increased in p21
condyles affected by mechanical stress.
Our findings indicate that p21 in chondrocytes contributes to regulate matrix synthesis via the control ofm aggrecan and MMP-13 expression under mechanical stress. Thus, p21 might regulate the pathogenesis of osteoarthritis in the TMJ.
Our findings indicate that p21 in chondrocytes contributes to regulate matrix synthesis via the control ofm aggrecan and MMP-13 expression under mechanical stress. Thus, p21 might regulate the pathogenesis of osteoarthritis in the TMJ.Ultrahigh field magnetic resonance imaging facilitates high spatiotemporal resolution that benefits from increasing the number of receiver elements. Because high-density receiver arrays have a relatively small element size compared with the transmitter, a side effect is that such setups cause low flux coupling between the transmitter and receiver. Moreover, when transmitters are designed in a multitransmit configuration, their relative size is much smaller than the sample, reducing coupling to the sample and thereby potentially also the coupling to the receivers. Transmitters are traditionally detuned during reception. In this study, we investigate, for a 32-channel receiver head array at 7 T, if transmitter detuning of a quadrature birdcage or of an eight-channel transmit coil can be omitted without substantially sacrificing signal-to-noise ratio (SNR). The transmit elements are operated once with and once without detuning and, in the latter, the received signals are either merged with the array or excluded for image reconstruction. For each of the three measurements, SNR and 1/g-factor maps are investigated. The tuning of the quadrature and eight-channel transmit coils during signal reception introduced a 10.1% and 6.5% penalty in SNR, respectively, relative to the SNR received with detuned transmitters. When also incorporating the signal of the transmit coils, the SNR was regained to 98.5% or 101.4% for the quadrature and eight-channel coil, respectively, relative to the detuned transmitters, while the 1/g-factor maps improved slightly. For the 32-channel receive coil used the SNR penalty can become negligible when omitting detuning of the transmit coils. This not only simplifies transmit coil designs, potentially increasing their efficiency, but also enables the transmitters to be used as receivers in parallel to the receiver array, thus increasing parallel imaging performance.
Next generation sequencing (NGS) has promising applications in transfusion medicine. Exome sequencing (ES) is increasingly used in the clinical setting, and blood group interpretation is an additional value that could be extracted from existing data sets. We provide the first release of an open-source software tailored for this purpose and describe its validation with three blood group systems.
The DTM-Tools algorithm was designed and used to analyse 1018 ES NGS files from the ClinSeq
cohort. Predictions were correlated with serology for 5 antigens in a subset of 108 blood samples. Discrepancies were investigated with alternative phenotyping and genotyping methods, including a long-read NGS platform.
Of 116 genomic variants queried, those corresponding to 18 known KEL, FY and JK alleles were identified in this cohort. 596 additional exonic variants were identified KEL, ACKR1 and SLC14A1, including 58 predicted frameshifts. Software predictions were validated by serology in 108 participants; one case in the FY blood group and three cases in the JK blood group were discrepant. Investigation revealed that these discrepancies resulted from (1) clerical error, (2) serologic failure to detect weak antigenic expression and (3) a frameshift variant absent in blood group databases.
DTM-Tools can be employed for rapid Kell, Duffy and Kidd blood group antigen prediction from existing ES data sets; for discrepancies detected in the validation data set, software predictions proved accurate. DTM-Tools is open-source and in continuous development.
DTM-Tools can be employed for rapid Kell, Duffy and Kidd blood group antigen prediction from existing ES data sets; for discrepancies detected in the validation data set, software predictions proved accurate. DTM-Tools is open-source and in continuous development.Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. D-Arabino-2-deoxyhexose With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized.