Bentonkern9124
The limit of detection (LOD) is 1 fM, which is achieved with an analyte binding time of 1 h. Efficient mass transfer provides highly sensitive detection of whole virus particles despite their low diffusion coefficient. The achieved LOD for vaccinia virus is 104 particles in 1 mL of sample. Finally, we have performed for the first time the simultaneous detection of whole virus and CT protein biomarker in a single assay. The developed technique can be used for multiplex detection of trace amounts of pathogens of various natures.Transition-metal-based chalcogenides are a series of intriguing semiconductors with applications spanning various fields because of their rich structure and numerous functionalities. This paper reports the crystal structure and basic physical properties of a new quaternary chalcogenide In4Pb5.5Sb5S19. The crystal structure of In4Pb5.5Sb5S19 was determined by both powder and single-crystal X-ray diffraction techniques. In4Pb5.5Sb5S19 crystallizes in the monoclinic system with I2/m space group, and the structure parameters are a = 26.483 Å, b = 3.899 Å, c = 32.696 Å, and β = 111.86°. The polyhedral double chains of Sb3+ and Sb/Pb2+ as the main cations are parallel to each other and form a Jamesonite-like mineral structure through the short chain links of the distorted In, Pb, and Sb polyhedron. In4Pb5.5Sb5S19 exhibits a moderate experimental band gap of 1.42 eV, indicating its potential for application in solar cells and photocatalysis. In addition, In4Pb5.5Sb5S19 exhibits good ambient stability, and differential scanning calorimetry tests demonstrate that it is stable up to 892 K in a nitrogen atmosphere. Moreover, In4Pb5.5Sb5S19 exhibits extremely low thermal conductivity (0.438-0.478 W m-1 K-1 ranging from 300 to 700 K) compared with binary counterparts such as PbS and In2S3. Future chemical manipulation via elemental doping or defect engineering may make the title compound a potential thermoelectric or thermal insulating material.Genetically encoded fluorescent sensors have been widely used to illuminate secretory vesicle dynamics and the vesicular lumen, including Zn2+ and pH, in living cells. However, vesicular sensors have a tendency to mislocalize and are susceptible to the acidic intraluminal pH. In this study, we performed a systematic comparison of five different vesicular proteins to target the fluorescent protein mCherry and a Zn2+ Förster resonance energy transfer (FRET) sensor to secretory vesicles. We found that motifs derived from vesicular cargo proteins, including chromogranin A (CgA), target vesicular puncta with greater efficacy than transmembrane proteins. To characterize vesicular Zn2+ levels, we developed CgA-Zn2+ FRET sensor fusions with existing sensors ZapCY1 and eCALWY-4 and characterized subcellular localization and the influence of pH on sensor performance. We simultaneously monitored Zn2+ and pH in individual secretory vesicles by leveraging the acceptor fluorescent protein as a pH sensor and found that pH influenced FRET measurements in situ. While unable to characterize vesicular Zn2+ at the single-vesicle level, we were able to monitor Zn2+ dynamics in populations of vesicles and detected high vesicular Zn2+ in MIN6 cells compared to lower levels in the prostate cancer cell line LnCaP. The combination of CgA-ZapCY1 and CgA-eCALWY-4 allows for measurement of Zn2+ from pM to nM ranges.K120 of glycerol 3-phosphate dehydrogenase (GPDH) lies close to the carbonyl group of the bound dihydroxyacetone phosphate (DHAP) dianion. pH rate (pH 4.6-9.0) profiles are reported for kcat and (kcat/Km)dianion for wild type and K120A GPDH-catalyzed reduction of DHAP by NADH, and for (kcat/KdKam) for activation of the variant-catalyzed reduction by CH3CH2NH3+, where Kam and Kd are apparent dissociation constants for CH3CH2NH3+ and DHAP, respectively. These profiles provide evidence that the K120 side chain cation, which is stabilized by an ion-pairing interaction with the D260 side chain, remains protonated between pH 4.6 and 9.0. The profiles for wild type and K120A variant GPDH show downward breaks at a similar pH value (7.6) that are attributed to protonation of the K204 side chain, which also lies close to the substrate carbonyl oxygen. The pH profiles for (kcat/Km)dianion and (kcat/KdKam) for the K120A variant show that the monoprotonated form of the variant is activated for catalysis by CH3CH2NH3+ but has no detectable activity, compared to the diprotonated variant, for unactivated reduction of DHAP. The pH profile for kcat shows that the monoprotonated K120A variant is active toward reduction of enzyme-bound DHAP, because of activation by a ligand-driven conformational change. Upward breaks in the pH profiles for kcat and (kcat/Km)dianion for K120A GPDH are attributed to protonation of D260. These breaks are consistent with the functional replacement of K120 by D260, and a plasticity in the catalytic roles of the active site side chains.
Being a Caribbean country, the Dominican Republic is considered endemic for HTLV-1. Viral screening in blood banks is recommended for this blood borne infection. The purpose of this work is to analyze the seroprevalence and trends of HTLV-1/2 in the Dominican Republic blood donors; it is focused on Santo Domingo, the capital of the country, which has the largest blood donation activity. Quinine ic50 We also aim at comparing our findings with published data from neighboring countries.
We performed a retrospective cross-sectional study of 10 blood centers of Santo Domingo, which reported HTLV and the other blood-transmitted infections in full. They represent more than 40% of the province's blood donations. Annual seroprevalence of HTLV-1/2, period prevalence (2012-2017), and time trend were determined.
A total of 352,960 blood donations were evaluated. The HTLV-1/2 period prevalence was 0.26% (929/352,960)(95% CI 0.24-0.28%). We also found a marked predominance of replacement donation (90.4%) in comparison to voluntary contributions (9.6%). Therefore, this blood donor study may provide clues on the general prevalence of the infection.
Seroprevalence of HTLV-1/2 in blood donors of Santo Domingo, Dominican Republic, showed a relatively low and steady trend in the studied period.
Seroprevalence of HTLV-1/2 in blood donors of Santo Domingo, Dominican Republic, showed a relatively low and steady trend in the studied period.