Bennedsensykes2302

Z Iurium Wiki

By functionalizing the surface with coupled hyaluronic acid, cell spreading was initially retarded, thereby widening this temporal window. This approach demonstrates a novel method for enhancing the recovery of cryopreserved cell sheets on surfaces.There are many different types of surfaces found in nature which can increase or reduce friction, such as the well-studied frog toe or lotus leaf. However, methods for replicating these surfaces on a large scale for use in industrial applications are needed in order to take advantage of this natural friction engineering. Most replication processes rely on molding that requires an input surface size comparable to the desired output surface. We present a novel approach of replicating large-scale biosurfaces using a laser scanning confocal microscope for surface digitization and 3D two-photon lithography for the fabrication of the digitized surface. Two different natural surfaces (banana skin and daffodil petal) were replicated. An intermediary tiling process was used to cover a target area of arbitrary size independent of the input texture size. The surfaces were coated with a thin layer of ZnO, and the frictional and wettability characteristics of the replicated surfaces were then examined, demonstrating significant friction reduction up to 42% and increased hydrophobicity due to the presence of texture.A key hurdle toward effective application of nanoparticles (NPs) in biomedicine is still the incomplete understanding of the biomolecular adsorption layer, the so-called protein corona, which inevitably forms around NPs when they are immersed in a biofluid. NP sizing techniques via the analysis of Brownian motions offer a powerful way to measure the thickness of the protein corona in situ. Here, the fundamentals of three techniques, dynamic light scattering, fluorescence correlation spectroscopy, and nanoparticle tracking analysis are briefly summarized. Then, experimental procedures for the determination of binding curves are presented in a tutorial fashion. Nanoparticle sizing experiments are illustrated with a selection of recent results on the interactions of transferrin with hydrophilic and hydrophobic polystyrene nanoparticles, and key insights gained from this work are discussed.Many natural surfaces, including the wings of cicada insects, have shown to display bactericidal properties as a result of surface topography. Moreover, the size and distribution of the surface features (on the nano- and microscale) are known to influence the efficacy of the surface at inhibiting bacterial cell growth. While these types of natural surfaces illustrate the effect of structure on the bactericidal activity, a deeper understanding can be achieved by creating surfaces of different feature sizes. This is essential in order to understand the effects of changes of surface topography on bacteria-surface interactions. To this end, we have performed a series of replica molding processes of the wings of the Megapomponia Intermedia cicada to prepare wing replicas in polyethylene glycol (PEG), which possess the topographical features of the wing surface, with a minimum loss of feature resolution. Atomic force microscopy characterization of these patterned surfaces in both air and aqueous environments shows that by controlling the swelling characteristics of the PEG, we can control the ultimate swollen dimensions of the nanopillar structures on the surface of PEG. As a result, by using a single wing with an average nanopillar height of 220 nm, different patterned PEG samples with nanopillar heights ranging from 180 to 307 nm were produced.Fluorescent dyes and nanoparticles (NPs) have been widely used together to make novel biosensors, taking advantage of their unique characteristics. It is crucial to have techniques that enable us to gain detailed and high-resolution information regarding the interaction between NPs and fluorescent dyes. In this work, we chose rhodamine B (RhB) and amidine- and carboxylate-modified polystyrene (CML) NPs as models and employed both NMR (1H and STD-NMR) and optical (UV-vis and fluorescence) techniques to investigate the interaction between NPs and fluorescent dyes. From UV-vis and fluorescence spectroscopy, we see that there are larger red shifts when rhodamine B binds to carboxylate-modified polystyrene NPs than amidine-modified NPs. Correspondingly, RhB has broader NMR peaks and a larger STD effect when binding to CML NPs than amidine NPs. Results from these two techniques validate each other. It is notable that the NMR techniques provide more reliable data than UV-vis and fluorescence methods. Moreover, we show that NMR techniques, especially STD-NMR, can provide more atomic-level binding geometry information. The higher STD effect of the smaller aromatic ring of RhB implies that this aromatic ring is closer to the surface of NPs when binding to polystyrene NPs.Mastering the magnetic response of molecular spin interfaces by tuning the occupancy of the molecular orbitals, which carry the spin magnetic moment, can be accomplished by electron doping. We propose a viable route to control the magnetization direction and magnitude of a molecular spin network, in a graphene-mediated architecture, achieved via alkali doping of manganese phthalocyanine (MnPc) molecules assembled on cobalt intercalated under a graphene membrane. The antiparallel magnetic alignment of the MnPc molecules with the underlying Co layer can be switched to a ferromagnetic state by electron doping. Multiplet calculations unveil an enhanced magnetic state of the Mn centers with a 3/2 to 5/2 spin transition induced by alkali doping, as confirmed by the steepening of the hysteresis loops, with higher saturation magnetization values. This new molecular spin configuration can be aligned by an external field, almost independently from the hard-magnet substrate effectively behaving as a free magnetic layer.Spin field-effect transistors (SFETs) based on the Rashba effect could manipulate the spin of electrons electrically, while seeking desirable Rashba semiconductors with large Rashba constant and strong electric-field response, to preserve spin coherence remains a key challenge. Herein, we propose a series of 2D Rashba semiconductors with two-atom-thick buckled honeycomb structure (BHS) according to high-throughput first-principles density functional theory calculations. BHS semiconductors show large Rashba constants that are favorable to be integrated into nanodevices superior to conventional bulk materials, and they can be fabricated by mechanical exfoliation or chemical vapor deposition. In particular, 2D AlBi monolayer has the largest Rashba constant (2.77 eVÅ) of all 2D Rashba materials. Furthermore, 2D BiSb monolayer is a promising candidate for SFETs due to its large Rashba constant (1.94 eVÅ) and strong electric field response (0.92 eÅ2). Our designed 2D-BiSb-SFET shows shorter spin channel length (42 nm with strain) than conventional SFETs (2-5 μm).The Yes-associated protein (YAP) is a major oncoprotein responsible for cell proliferation control. YAP's oncogenic activity is regulated by both the Hippo kinase cascade and uniquely by a mechanical-force-induced actin remodeling process. Inspired by reports that ovarian cancer cells specifically accumulate the phosphatase protein ALPP on lipid rafts that physically link to actin cytoskeleton, we developed a molecular self-assembly (MSA) technology that selectively halts cancer cell proliferation by inactivating YAP. We designed a ruthenium-complex-peptide precursor molecule that, upon cleavage of phosphate groups, undergoes self-assembly to form nanostructures specifically on lipid rafts of ovarian cancer cells. The MSAs exert potent, cancer-cell-specific antiproliferative effects in multiple cancer cell lines and in mouse xenograft tumor models. Our work illustrates how basic biochemical insights can be exploited as the basis for a nanobiointerface fabrication technology which links nanoscale protein activities at specific subcellular locations to molecular biological activities to suppress cancer cell proliferation.We describe the synthesis of 1,4-(disubstituted)-5-triazenyl-1,2,3-triazoles through a ligand-free domino copper(I)-catalyzed azide-alkyne-azide process of chelating aryl azides bearing N-P═O, P═O, and SO3H groups at the ortho position with a wide variety of acetylenes. DFT calculations reveal that Cu-chelation is a crucial factor in the interception of the CuAAC intermediate by the azide. The crystal structure of the catalytic species has been determined by X-ray diffraction.The integration of surface-enhanced Raman spectrum (SERS) and fluorescence-photoacoustic multimodal imaging in near-infrared photothermal therapy is highly desirable for cancer theranostic. However, typically, gold nanotheranostics usually require an additional modification of fluorophores and complex design refinements. In this work, by integrating surface-modified cysteine-hydroxyl merocyanine (CyHMC) molecules onto AuNRs, a novel lysosome-targeted gold-based nanotheranostics AuNRs-CyHMC that combines the specificity of Raman spectrum, the speed of fluorescence imaging, and deep penetration of photoacoustic imaging was successfully fabricated. Interestingly, fluorescence and Raman signals in this AuNRs-CyHMC system do not interfere, but it has pH-sensitive Raman signals and self-fluorescence localization ability under different excitation wavelengths. Fluorescence co-localization experiments further confirmed the lysosome-targeting ability of AuNRs-CyHMC. Typically, the proposed nanotheranostics were capable of SERS monitoring pH changes in both phosphate-buffered saline and living cells. Meanwhile, in vitro and in vivo experiments revealed that AuNRs-CyHMC possessed excellent fluorescence-photoacoustic performance and could be used for multimodal imaging-guided photothermal therapy. Furthermore, our work implied that gold nanotheranostics can provide great potential for cancer diagnosis and treatment.Epigenetic dysregulations resulting from the defects of epigenetic regulators are often reversible in tumorigenesis, making them promising cancer therapeutic targets. However, the limited specificity of action, short-term stability, and low retention of the epigenetic drugs greatly impede their clinical efficacy against solid tumors. Herein a method of combinatorial delivery of epigenetic modulatory drugs via a molecular self-assembly strategy was developed using inhibitors of DNA methyltransferases and histone deacetylases. The drug-drug conjugates can self-assemble into nanofibers with enhanced chemical stability. The nanofibers synergistically regulate aberrant DNA methylation and histone deacetylation, subsequently reprogram the gene expression profiles, and finally inhibit gastric cancer cell proliferation and promote cell apoptosis. The superior in vivo therapeutic efficacy of the nanofibers could be ascribed to the prolonged retention and accumulation in tumors and the minimized off-target effects. Therefore, this design of epigenetic-drug-based nanofiber formulation may provide a valuable paradigm for cancer therapy through epigenetic reprogramming.The present study investigated the dynamic behavior of a nanosized water droplet on a flat and stepped surface using molecular dynamics simulations. The effects of a wetting gradient associated with the surface and the step height of a stepped surface on the dynamic behavior of the water droplet were considered in this study. The dynamic behaviors of the water droplet were described quantitatively upon analyzing the transient variation of the adhesion energy and the position of the water droplet along with the time required to climb the step. The water droplet moved smoothly along the surface with an increasing wetting gradient. learn more On the other hand, the step obstructed the water droplet from climbing the step as the step height increases. The dynamic behavior of the water droplet depending on the variation of the normalized step height and the differences in adhesion energies between the different surfaces was classified into three types, namely, (1) fully climbing the step, (2) partially climbing the step, and (3) being blocked by the step.

Autoři článku: Bennedsensykes2302 (Munro Sharpe)