Bechday1414
A succinct strategy was demonstrated for constructing a hydroxyl group and imidazolium-bifunctionalized ionic network via a one-pot quaternization. Key to success lies in the rational design of multi-imidazole precursor and hydroxyl-containing counterpart. Unique properties of the resultant ionic network render its high catalytic efficiency toward CO2 fixation under ambient conditions.Lipid lamellar hydrogels are rare soft fluids composed of a phospholipid lamellar phase instead of fibrillar networks. The mechanical properties of these materials are controlled by defects, induced by local accumulation of a polymer or surfactant in a classical lipid bilayer. Herein we report a new class of lipid lamellar hydrogels composed of one single bolaform glycosylated lipid obtained by fermentation. The lipid is self-organized into flat interdigitated membranes, stabilized by electrostatic repulsive forces and stacked in micrometer-sized lamellar domains. The defects in the membranes and the interconnection of the lamellar domains are responsible, from the nano- to the micrometer scales, for the elastic properties of the hydrogels. The lamellar structure is probed by combining small angle X-ray and neutron scattering (SAXS, SANS), the defect-rich lamellar domains are visualized by polarized light microscopy while the elastic properties are studied by oscillatory rheology. The latter show that both storage G' and loss G moduli scale as a weak power-law of the frequency, that can be fitted with fractional rheology models. The hydrogels possess rheo-thinning properties with second-scale recovery. We also show that ionic strength is not only necessary, as one could expect, to control the interactions in the lamellar phase but, most importantly, it directly controls the elastic properties of the lamellar gels.The present study compares the effect of two types of vinegars, Balsamic vinegar of Modena (BV) and Chinese Shanxi vinegar (SV), with acetic acid on plasma cholesterol using hamsters as a model. Hamsters (n = 40) were divided into five groups (n = 8 each) with two control groups being fed a low-cholesterol diet (LCD) or a high-cholesterol diet containing 0.2% cholesterol (HCD). The three experimental groups were given a HCD diet and gavaged with 8 ml of BV, SV, and acetic acid solution (AC) per kg body weight, respectively. Acetic acid in BV, SV, and AC solutions was adjusted with water to be 20 mg ml-1. The whole experiment lasted for 9 weeks. Plasma total cholesterol (TC) in BV and SV groups but not in the AC group was reduced by 17% and 20%, respectively, compared with that in HCD hamsters. BV and SV significantly reduced cholesterol in the liver and increased the fecal excretion of neutral sterols and bile acids. Real-time PCR analysis demonstrated that BV and SV significantly up-regulated the mRNA of cholesterol 7 alpha-hydroxylase (CYP7A1) in the liver. In conclusion, BV and SV but not AC were effective in reducing plasma TC and non-HDL-C concentrations at least in hypercholesterolemic hamsters.Omega-3 (ω-3) polyunsaturated fatty acids are highly susceptible to oxidation and have an intense odour and poor water solubility, which make their direct applications in foods extremely difficult. In order to reduce their oxidation process and improve their stability in aqueous medium, protein-based nanoemulsions were produced and characterized. Lactoferrin (Lf) was used as an emulsifier at different concentrations (0.2% to 4% w/w). High energy methods (Ultra-Turrax and high-pressure homogenizer) were applied to produce Lf-based nanoemulsions with ω-3 PUFAs encapsulated. The nanoemulsions were characterized in terms of physical and chemical stability at 4 and 25 °C. The results obtained revealed that the Lf concentration influences the nanoemulsion size in a manner that higher Lf concentrations decrease the nanoemulsion size. It was also observed that the nanoemulsions are physically stable when stored at 4 °C for 69 days while at 25 °C they showed instability. The radical scavenging capacity of the nanoemulsions did not show significant changes over storage at 4 and 25 °C while a significant increase in oxidation was observed. The release profile at 37 °C showed that ω-3 PUFAs were slowly released at pH 2 but was rapidly released at pH 7.4 from Lf nanoemulsions. Moreover, MTT assay revealed that 2% (w/w) Lf nanoemulsions with 12.5 μg mL-1 ω-3 PUFAs were not cytotoxic to Caco-2 cells. Nanoemulsions with high physical and chemical stability were selected and dried by two different methodologies freeze-drying and nano spray-drying. ATR-FTIR spectroscopy, Raman spectroscopy and Circular Dichroism (CD) showed Lf structural changes after the drying processes. This work provides important information regarding nanoemulsions' design and drying technologies aiming at the encapsulation of lipophilic compounds for pharmaceutical and food applications.This article gives a short review on the visible-light promoted synthesis of α-functionalized ketones from alkenes. Various α-functionalized ketones, including α-halo, sulfinyl/sulfonyl, aryl, azido and thiocyanato ketones can be synthesized from the reaction of alkenes with different radical species generated by visible-light catalysis. These transformations typically use dioxygen as the terminal oxidant and do not require a transition metal to activate the double bond, which is quite different from the transition-metal catalysed reactions (Wacker oxidation or hydroformylation).The synthesis and behavior in water of a set of various cis(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) and trans(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) (R = fluorenyl, phenyl, thiophenyl; tpy = 2,2'6',2-terpyridine) complexes are presented. In any case, one chlorido ligand is substituted by a hydroxo ligand and the final species arises as a single trans(NO,OH) isomer, whatever the nature of the starting cis/trans(Cl,Cl) complexes. Six X-ray crystal structures are presented for cis(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (cis-3a), trans(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (trans-3a), trans(NO,OH)-[phenyl-tpyRu(Cl)(OH)(NO)](PF6) (4a), trans(NO,OH)-[thiophenyl-tpyRu(Cl)(OH)(NO)](PF6) (4b), trans(NO,OEt)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5a), and trans(NO,OH)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5b) compounds. The different cis/trans(Cl,Cl) complexes exhibit an intense low-lying transition in the λ = 330-390 nm range, which appears to be slightly blue-shifted after Cl → OH substitution. In water, both cis/trans(Cl,Cl) isomers are converted to a single trans(NO,OH) isomer in which one chlorido- is replaced by one hydroxo-ligand, which avoids tedious separation workout. The water stable trans(NO,OH)-species all release NO with quantum yields of 0.010 to 0.075 under irradiation at 365 nm. The properties are discussed with computational analysis performed within the framework of Density Functional Theory.An o-nitro-O-aryl oxime was observed to exhibit a short OO contact, which exhibited characteristics consistent with a chalcogen bond. The O-N bond length of the oxime was appreciably longer than the expected value, and NBO calculations indicated the presence of a n(O) → σ(O-N) orbital delocalisation. Topological analysis of the experimental electron density of two analogues shows the presence of a bond path between the two oxygen atoms, with ρ(r) and ∇2ρ(r) values consistent with an electrostatic interaction. Finally, electrostatic potential calculations indicate the presence of a σ-hole, the "smoking gun" indicating a Ch-bond. These results are unusual as oxygen is not typically considered to be a Ch-bond donor, especially in unactivated systems such as oximes.The unique plasmonic energy exchange occurring within metallic crossed surface relief gratings (CSRGs) has recently motivated their use as biosensors. 2-Aminoethanethiol ic50 However, CSRG-based biosensing has been limited to spectroscopic techniques, failing to harness their potential for integration with ubiquitous portable electronics. Here, we introduce biosensing via surface plasmon resonance imaging (SPRi) enabled by CSRGs. The SPRi platform is fully integrated including optics and electronics, has bulk sensitivity of 613 Pixel Intensity Unit (PIU)/Refractive Index Unit (RIU), a resolution of 10-6 RIU and a signal-to-noise ratio of ∼33 dB. Finite-Difference Time-Domain (FDTD) simulations confirm that CSRG-enabled SPRi is supported by an electric field intensity enhancement of ∼30 times, due to plasmon resonance at the metal-dielectric interface. In the context of real-world biosensing applications, we demonstrate the rapid ( less then 35 min) and label-free detection of uropathogenic E. coli (UPEC) in PBS and human urine samples for concentrations ranging from 103 to 109 CFU mL-1. The detection limit of the platform is ∼100 CFU mL-1, three orders of magnitude lower than the clinical detection limit for diagnosis of urinary tract infection. This work presents a new avenue for CSRGs as SPRi-based biosensing platforms and their great potential for integration with portable electronics for applications requiring in situ detection.Although hepatoblastoma is rare, it is the most malignant tumour of childhood. Treatment is usually done by surgical resection and chemotherapy. The mortality and morbidity have decreased due to improvements in the treatments. In this process, hepatic resection has a risk of pulmonary embolism, and this condition could be fatal. In this case, a 9-month-old patient who was treated with chemotherapy and then underwent hepatectomy was presented. We used non-invasive methods such as the perfusion index (PI), the plethysmographic variability index (PVI) (Massimo Radical 7) and non-invasive total haemoglobin measurement (SpHb) rather than invasive measurements. During closure of the surgical skin incision, the end-tidal CO2 (ETCO2) value dropped, after which arrhythmia and bradycardia resulted in cardiac arrest. Cardiopulmonary resuscitation (CPR) was initiated. However, the patient did not respond to CPR. We concluded that heparin may be administered to reduce the risk of thrombosis in patients undergoing liver surgery. © Copyright 2020 by Turkish Anaesthesiology and Intensive Care Society.Although spontaneous intracranial hypotension cases related to connective tissue diseases have been reported in the literature, to the best of our knowledge, no cases of iatrogenic intracranial hypotension have been described. In this paper, we plan to discuss a case of acute subdural haematoma and postdural puncture headache that developed after spinal anaesthesia in a patient with Sjögren's syndrome. © Copyright 2020 by Turkish Anaesthesiology and Intensive Care Society.We report a case of spinal cord injury following an attempted epidural in a conscious woman for pain management in acute pancreatitis. The epidural needle was inserted at the T11-T12 interspace. On the second attempt, dural puncture occurred. The patient did not complain of pain or discomfort during the procedure. Thirty-two hours after the attempted epidural, the patient was found to have motor deficit on her right lower limb. Magnetic resonance imaging showed a spinal haematoma with direct spinal cord injury. Post-laminectomy neurological recovery was slow but progressive. The possible causes for spinal cord injury and spinal haematoma without pain or paraesthesia during the procedure are discussed. © Copyright 2020 by Turkish Anaesthesiology and Intensive Care Society.