Beardrosenthal9095

Z Iurium Wiki

Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a fourth-order hexadecapole (16-pole) insulator supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes practical constraints on the range of interactions between different frequency components. Here we propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for the fundamental study of high-dimensional physics and act as an important step towards using topological effects in optical devices operating in the time and frequency domains.Over the past decade, topology has emerged as a major branch in broad areas of physics, from atomic lattices to condensed matter. In particular, topology has received significant attention in photonics because light waves can serve as a platform to investigate nontrivial bulk and edge physics with the aid of carefully engineered photonic crystals and metamaterials. Simultaneously, photonics provides enriched physics that arises from spin-1 vectorial electromagnetic fields. Here, we review recent progress in the growing field of topological photonics in three parts. The first part is dedicated to the basics of topological band theory and introduces various two-dimensional topological phases. The second part reviews three-dimensional topological phases and numerous approaches to achieve them in photonics. Last, we present recently emerging fields in topological photonics that have not yet been reviewed. This part includes topological degeneracies in nonzero dimensions, unidirectional Maxwellian spin waves, higher-order photonic topological phases, and stacking of photonic crystals to attain layer pseudospin. selleck compound In addition to the various approaches for realizing photonic topological phases, we also discuss the interaction between light and topological matter and the efforts towards practical applications of topological photonics.We present Floquet fractal topological insulators photonic topological insulators in a fractal-dimensional lattice consisting of helical waveguides. The helical modulation induces an artificial gauge field and leads to a trivial-to-topological phase transition. The quasi-energy spectrum shows the existence of topological edge states corresponding to real-space Chern number 1. We study the propagation of light along the outer edges of the fractal lattice and find that wavepackets move along the edges without penetrating into the bulk or backscattering even in the presence of disorder. In a similar vein, we find that the inner edges of the fractal lattice also exhibit robust transport when the fractal is of sufficiently high generation. Finally, we find topological edge states that span the circumference of a hybrid half-fractal, half-honeycomb lattice, passing from the edge of the honeycomb lattice to the edge of the fractal structure virtually without scattering, despite the transition from two dimensions to a fractal dimension. Our system offers a realizable experimental platform to study topological fractals and provides new directions for exploring topological physics.The recently proposed concept of graphene photodetectors offers remarkable properties such as unprecedented compactness, ultrabroadband detection, and an ultrafast response speed. However, owing to the low optical absorption of pristine monolayer graphene, the intrinsically low responsivity of graphene photodetectors significantly hinders the development of practical devices. To address this issue, numerous efforts have thus far been made to enhance the light-graphene interaction using plasmonic structures. These approaches, however, can be significantly advanced by leveraging the other critical aspect of graphene photoresponsivity enhancement-electrical junction control. It has been reported that the dominant photocarrier generation mechanism in graphene is the photothermoelectric (PTE) effect. Thus, the two energy conversion mechanisms involved in the graphene photodetection process are light-to-heat and heat-to-electricity conversions. In this work, we propose a meticulously designed device architecture to simultaneously enhance the two conversion efficiencies. Specifically, a gap plasmon structure is used to absorb a major portion of the incident light to induce localized heating, and a pair of split gates is used to produce a p-n junction in graphene to augment the PTE current generation. The gap plasmon structure and the split gates are designed to share common key components so that the proposed device architecture concurrently realizes both optical and electrical enhancements. We experimentally demonstrate the dominance of the PTE effect in graphene photocurrent generation and observe a 25-fold increase in the generated photocurrent compared to the un-enhanced cases. While further photocurrent enhancement can be achieved by applying a DC bias, the proposed device concept shows vast potential for practical applications.BACKGROUND This article presents a rare case of 2 separate intraosseous ganglion cysts of the talus in a 51-year-old man, treated with a unique technique of precise lesion targeting to avoid extensive bone loss and minimize articular chondral injury of the talus. CASE REPORT Two separate intraosseous ganglion cysts of the talus were diagnosed in a 51-year-old man with chronic ankle pain. A single straight-line incision with an entry point through the talonavicular joint was created to spare the precarious blood supply of the talus network. The 2 distinct subchondral lesions were approached under fluoroscopic control for curettage and autologous bone grafting using the anterior cruciate ligament tibial guide in a pair-of-compasses fashion. In almost 5 years of follow-up the patient has been asymptomatic. Magnetic resonance imaging has revealed no signs of degenerative changes in the ankle or the talonavicular joint, and the intraosseous edema has almost disappeared. CONCLUSIONS To the best of our knowledge, this case is the first report of 2 distinct intraosseous ganglion cysts of the talus.

Autoři článku: Beardrosenthal9095 (Lind Connolly)