Baxterwestergaard2167

Z Iurium Wiki

Experimental measurements of electron transport properties of molecular junctions are often performed in solvents. Solvent-molecule coupling and physical properties of the solvent can be used as the external stimulus to control the electric current through a molecule. In this paper, we propose a model that includes dynamical effects of solvent-molecule interaction in non-equilibrium Green's function calculations of the electric current. The solvent is considered as a macroscopic dipole moment that reorients stochastically and interacts with the electrons tunneling through the molecular junction. The Keldysh-Kadanoff-Baym equations for electronic Green's functions are solved in the time domain with subsequent averaging over random realizations of rotational variables using the Furutsu-Novikov method for the exact closure of infinite hierarchy of stochastic correlation functions. The developed theory requires the use of wideband approximation as well as classical treatment of solvent degrees of freedom. The theory is applied to a model molecular junction. It is demonstrated that not only electrostatic interaction between molecular junction and solvent but also solvent viscosity can be used to control electrical properties of the junction. Alignment of the rotating dipole moment breaks the particle-hole symmetry of the transmission favoring either hole or electron transport channels depending upon the aligning potential.We performed first-principles computations to investigate guest-host/host-host effects on the encapsulation of the CO2 molecule in sII clathrate hydrates from finite-size clusters up to periodic 3D crystal lattice systems. Structural and energetic properties were first computed for the individual and first-neighbors clathrate-like sII cages, where highly accurate ab initio quantum chemical methods are available nowadays, allowing in this way the assessment of the density functional (DFT) theoretical approaches employed. The performance of exchange-correlation functionals together with recently developed dispersion-corrected schemes was evaluated in describing interactions in both short-range and long-range regions of the potential. On this basis, structural relaxations of the CO2-filled and empty sII unit cells yield lattice and compressibility parameters comparable to experimental and previous theoretical values available for sII hydrates. According to these data, the CO2 enclathration in the sII clathrate cages is a stabilizing process, either by considering both guest-host and host-host interactions in the complete unit cell or only the guest-water energies for the individual clathrate-like sII cages. CO2@sII clathrates are predicted to be stable whatever the dispersion correction applied and in the case of single cage occupancy are found to be more stable than the CO2@sI structures. Our results reveal that DFT approaches could provide a good reasonable description of the underlying interactions, enabling the investigation of formation and transformation processes as a function of temperature and pressure.The photodissociation channels of nitrosobenzene (PhNO) induced by a 255 nm photolytic wavelength have been studied using the complete active space self-consistent method and the multistate second-order multiconfigurational perturbation theory. It is found that there exists a triplet route for photodissociation of the molecule. The reaction mechanism consists of a complex cascade of nonadiabatic electronic transitions involving triple and double conical intersections as well as intersystem crossing. Several of the relevant states (S2, S4, and S5 states) correspond to double excitations. It is worth noting that the last step of the photodissociation implies an internal conversion process. The experimentally observed velocity pattern of the NO fragment is a signature of such a conical intersection.Surface-bound reactions are commonly employed to develop nanoarchitectures through bottom-up assembly. Precursor molecules are carefully designed, and surfaces are chosen with the intention to fabricate low-dimensional extended networks, which can include one-dimensional and two-dimensional structures. The inclusion of functional groups can offer the opportunity to utilize unique chemistry to further tune the bottom-up method or form novel nanostructures. Specifically, carbonyl groups open up new avenues for on-surface coordination chemistry. Here, the self-assembly and formation of an organometallic species via the thermally induced reaction of 3,6-dibromo-9,10-phenanthrenequinone (DBPQ) molecules were studied on Ag(100) and Ag(110). Low-temperature ultrahigh vacuum scanning tunneling microscopy revealed the room temperature formation of self-assemblies defined by hydrogen and halogen bonds on Ag(100). Oxaliplatin Following a thermal anneal to 300 °C, DBPQ on Ag(100) was found to form metal-organic coordination networks composed of a combination of organometallic species characteristics of Ullmann-like coupling reactions and carbonyl complexes. On Ag(110), the C-Br bonds were found to readily dissociate at room temperature, resulting in the formation of disordered organometallic species.The theory of solvation structure in an electronically polarizable solvent recently proposed by us, referred to as the "solvent-polarizable three-dimensional reference interaction-site model theory," is extended to dynamics in this study through the combination with time-dependent density functional theory. Test calculations are performed on model charge-transfer systems in water, and the effects of electronic polarizability on solvation dynamics are examined. The electronic polarizability slightly retards the solvation dynamics. This is ascribed to the decrease in the curvature of the nonequilibrium free energy profile along the solvation coordinate. The solvent relaxation is bimodal, and the faster and the slower modes are assigned to the reorientational and the translational modes, respectively, as was already reported by the surrogate theory combined with the site-site Smoluchowski-Vlasov equation. The relaxation path along the solvation coordinate is a little higher than the minimum free energy path because the translational mode is fixed in the time scale of the reorientational relaxation.

Autoři článku: Baxterwestergaard2167 (Doherty Trujillo)