Bassnorman7063
This paper takes stock of the cash assistance provided by the government to construction workers during the COVID-19 pandemic. As the role of the state construction welfare board has been crucial, some existing issues related to boards and challenges emerged during the crisis have also been discussed. Results show that cash benefit through direct benefit transfer has partially helped workers to overcome their financial distress, but 65% workers did not receive any benefit due to various issues related to registration and seeding of bank accounts with Aadhar. Sluggish process of registration has been a major issue which is being addressed by different mechanisms, but results would be known later. Proper cess collection and its utilisation is still an important issue as 61% of the cess collected in 2019 was not utilised. Even during the crisis, 15% cess was used at most in direct benefit transfer and in-kind (food distribution) support. Majority of the states are running a number of welfare schemes, but the coverage is poor despite proper guidelines set under the Model Welfare Framework of the Ministry of Labour and Employment. The objectives of Mission Mode Projects are appreciable, but the outcomes are not known even after the completion of deadlines. Above all, the emerging issues of maintaining health and hygiene at worksite and living place and getting vaccinated are major challenges for the sustainability of the construction sector. Hence, a collective effort of the government, employers, and workers' organisations is the need of the hour.Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. SB525334 The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.Long intergenic non-coding RNAs (lincRNAs) belong to the category of long non-coding RNAs (lncRNAs), originated from intergenic regions, which do not code for proteins. LincRNAs perform prominent role in regulation of gene expression during plant development and stress response by directly interacting with DNA, RNA, or proteins, or triggering production of small RNA regulatory molecules. Here, we identified 2973 lincRNAs and investigated their expression dynamics during peduncle elongation in two Indian rice cultivars, Pokkali and Swarna, at the time of heading. Differential expression analysis revealed common and cultivar-specific expression patterns, which we utilized to infer the lincRNA candidates with potential involvement in peduncle elongation and panicle exsertion. Their putative targets were identified using in silico prediction methods followed by pathway mapping and literature-survey based functional analysis. Further, to infer the mechanism of action, we identified the lincRNAs which potentially act as miRNA precursors or target mimics.
The online version contains supplementary material available at 10.1007/s12298-021-01059-2.
The online version contains supplementary material available at 10.1007/s12298-021-01059-2.Agrobacterium-mediated co-transformation method was used to generate marker-free insect resistant transgenic okra plants expressing the cry1Ac gene. The cry1Ac gene was borne on the T-DNA of one plasmid while nptII and uidA (GUS) marker genes were present on the T-DNA of a second plasmid. Putative transgenic plants were screened by histochemical GUS assay for expression of -glucuronidase and 32 transgenic events were positive for GUS in which 21 transgenic events were positive in ELISA for the presence of Cry1Ac protein. Out of 21 Cry1Ac positive T0 events, three events displayed Mendelian inheritance of the transgenes in (9331 ratio) T1 generation for Cry1Ac and GUS. Selected events were chosen for further genetic and molecular analysis. The cry1Ac and marker genes were found to segregate independently, of each other in 10 events in T1 generation out of 11 Cry1Ac gene inheriting events analysed indicating that the two T-DNAs insertions were genetically unlinked and identification of marker-free plants were pudy met the criteria for inclusion in commercial breeding programs.RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.Carbohydrate metabolism in plants is influenced by thermodynamics. The amount of carbon dioxide (CO2) in the atmosphere is expected to rise in the future. As a result, understanding the effects of higher CO2 on carbohydrate metabolism and heat stress tolerance is necessary for anticipating plant responses to global warming and elevated CO2. In this study, five wheat cultivars were exposed to heat stress (40 °C) at the onset of anthesis for three continuous days. These cultivars were grown at two levels of CO2 i.e. ambient CO2 level (a[CO2], 380 mmol L-1) and elevated CO2 level (e[CO2], 780 mmol L-1), to determine the interactive effect of elevated CO2 and heat stress on carbohydrate metabolism and antioxidant enzyme activity in wheat. Heat stress reduced the photosynthetic rate (Pn) and grain yield in all five cultivars, but cultivars grown in e[CO2] sustained Pn and grain yield in contrast to cultivars grown in a[CO2]. Heat stress reduced the activity of ADP-glucose pyrophosphorylase, UDP-glucose pyrophosphorylase, invertases, Glutathione reductase (GR), Peroxidase (POX), and Superoxide dismutase (SOD) at a[CO2] but increased at e[CO2]. The concentration of sucrose, glucose, and fructose mainly increased in tolerant cultivars under heat stress at e[CO2]. This study confirms the interaction between the heat stress and e[CO2] to mitigate the effect of heat stress on wheat and suggests to have in-depth knowledge and precise understanding of carbohydrate metabolism in heat stressed plants in order to prevent the negative effects of high temperatures on productivity and other physiological attributes.
The online version contains supplementary material available at 10.1007/s12298-021-01080-5.
The online version contains supplementary material available at 10.1007/s12298-021-01080-5.The effects of trehalose (Tre), a non-reducing disaccharide, on metabolic changes, antioxidant status, and salt tolerance in Dunaliella bardawil cells were investigated. Algal suspensions containing 1, 2, and 3 M NaCl were treated with 5 mM Tre. While the content of pigments, reducing sugars, proteins, glycerol, and ascorbate pool accumulated with increasing salinity, the content of non-reducing sugars, starch, amino acids, proline, hydrogen peroxide, and lipid peroxidation level decreased significantly. Tre-treated cells showed a decrease in pigments content, reducing sugars, starch, proteins, amino acids, proline, glycerol, and the activity of non-specific peroxidase and polyphenol oxidase, but an increase in non-reducing sugars, oxidized ascorbate, and ascorbate peroxidase activity occurred unchanged in the ascorbate pool. However, the density and fresh weight of the cells remained statistically unchanged in all Tre-treated and untreated cultures. These results suggest that D. bardawil cells potentially tolerate different salt levels by accumulating metabolites, whereas Tre treatment changes carbon partitioning and significantly reduces beneficial metabolites without altering salt tolerance. Therefore, the regulation of carbon partitioning rather than the amount of assimilated carbon may play an important role in inducing salinity tolerance of D. bardawil. However, Tre is not able to enhance the salt tolerance of halotolerants and is even economically damaging due to the reduction of unique metabolites such as glycerol and β-carotene.Soil salinity is a major threat to crop productivity all over the world including the Indo-Gangetic plain (IGP) region of India. Therefore, a field study was conducted for two consecutive years in wheat growing areas in IGP affected by salinity. Plants grown at a saline site (Salempur, SLM) and a non-saline site (Rajatalab, RJT), were analysed for selected biochemical, physiological and yield traits. Results showed that photosynthetic rate was not significantly affected, but transpiration rate and stomatal conductance declined at saline compared to non-saline site. Photosynthetic pigments increased during vegetative growth period, but decreased during reproductive stage at SLM site, while anthocyanin showed an opposite trend. Membrane damage, solute leakage, H2O2 and ·O2 - productions were intensified at saline site, SLM. Accumulation of osmolytes and antioxidants occurred in plants at saline compared to non-saline sites. K/Na and Ca/Na ratios in plants at SLM were reduced significantly compared to non-saline site, RJT.