Basskorsholm6826

Z Iurium Wiki

To quantify tobacco advertising, promotion and sponsorship (TAPS), self-reported exposure from online and offline platforms among adolescents in Indonesia.

A cross-sectional school-based survey was conducted in 2017. In total, 2820 students aged 13-18 years were recruited from 22 schools in seven cities. Respondents reported TAPS exposure on online (online news,

and

), and offline platforms (broadcast media, tobacco industry sponsored events and outdoor advertising). For outdoor advertisements, respondents reported the locations where they were exposed. We used multilevel analysis to assess TAPS exposure by age, gender, smoking status and city.

Online TAPS exposure was high on

(29.6%), and relatively low on

(7.3%). Offline TAPS exposure was high via television (74.0%), billboards (54.4%) and live music events (46.2%), but low on radio (6.9%). In all cities, outdoor advertising was seen particularly on the streets and in minimarkets. Overall, TAPS exposure was higher among older than younger adolescents, boys than girls, and smokers than non-smokers.

Overall TAPS exposure was high on both online and offline platforms. Banning online tobacco advertising, in addition to complete bans on outdoor and television advertising, is essential to adequately protect Indonesian adolescents from tobacco advertising.

Overall TAPS exposure was high on both online and offline platforms. Banning online tobacco advertising, in addition to complete bans on outdoor and television advertising, is essential to adequately protect Indonesian adolescents from tobacco advertising.Nonreciprocity emerges in nature and in artificial objects from various physical origins, being widely utilized in contemporary technologies as exemplified by diode elements in electronics. While most of the nonreciprocal phenomena are realized by employing interfaces where the inversion symmetry is trivially lifted, nonreciprocal transport of photons, electrons, magnons, and possibly phonons also emerge in bulk crystals with broken space inversion and time reversal symmetries. Among them, directional propagation of bulk magnons (i.e., quanta of spin wave excitation) is attracting much attention nowadays for its potentially large nonreciprocity suitable for spintronic and spin-caloritronic applications. Here, we demonstrate nonreciprocal propagation of spin waves for the conical spin helix state in Cu2OSeO3 due to a combination of dipole and Dzyaloshinskii-Moriya interactions. The observed nonreciprocal spin dispersion smoothly connects to the hitherto known magnetochiral nonreciprocity in the field-induced collinear spin state; thus, all the spin phases show diode characteristics in this chiral insulator.We demonstrate that the Langmuir-Hinshelwood formalism is an incomplete kinetic description and, in particular, that the Hinshelwood assumption (i.e., that adsorbates are randomly distributed on the surface) is inappropriate even in catalytic reactions as simple as A + A → A2 The Hinshelwood assumption results in miscounting of site pairs (e.g., A*-A*) and, consequently, in erroneous rates, reaction orders, and identification of rate-determining steps. The clustering and isolation of surface species unnoticed by the Langmuir-Hinshelwood model is rigorously accounted for by derivation of higher-order rate terms containing statistical factors specific to each site ensemble. Ensemble-specific statistical rate terms arise irrespective of and couple with lateral adsorbate interactions, are distinct for each elementary step including surface diffusion events (e.g., A* + * → * + A*), and provide physical insight obscured by the nonanalytical nature of the kinetic Monte Carlo (kMC) method-with which the higher-order formalism quantitatively agrees. The limitations of the Langmuir-Hinshelwood model are attributed to the incorrect assertion that the rate of an elementary step is the same with respect to each site ensemble. In actuality, each elementary step-including adsorbate diffusion-traverses through each ensemble with unique rate, reversibility, and kinetic-relevance to the overall reaction rate. Explicit kinetic description of ensemble-specific paths is key to the improvements of the higher-order formalism; enables quantification of ensemble-specific rate, reversibility, and degree of rate control of surface diffusion; and reveals that a single elementary step can, counter intuitively, be both equilibrated and rate determining.Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for helical root tip movement known as circumnutation. Here, we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the gene Oryza sativa histidine kinase-1 (HK1) as well as the auxin influx carrier gene OsAUX1 as essential regulators of this process in rice. Robophysical modeling and growth challenge experiments indicate circumnutation is critical for seedling establishment in rocky soil, consistent with the long-standing hypothesis that root circumnutation facilitates growth past obstacles. Thus, the integration of robotics, physics, and biology has elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation.Artificial mechanical perturbations affect chromatin in animal cells in culture. Whether this is also relevant to growing tissues in living organisms remains debated. In plants, aerial organ emergence occurs through localized outgrowth at the periphery of the shoot apical meristem, which also contains a stem cell niche. Interestingly, organ outgrowth has been proposed to generate compression in the saddle-shaped organ-meristem boundary domain. Yet whether such growth-induced mechanical stress affects chromatin in plant tissues is unknown. Here, by imaging the nuclear envelope in vivo over time and quantifying nucleus deformation, we demonstrate the presence of active nuclear compression in that domain. https://www.selleckchem.com/products/lw-6.html We developed a quantitative pipeline amenable to identifying a subset of very deformed nuclei deep in the boundary and in which nuclei become gradually narrower and more elongated as the cell contracts transversely. In this domain, we find that the number of chromocenters is reduced, as shown by chromatin staining and labeling, and that the expression of linker histone H1.

Autoři článku: Basskorsholm6826 (Lehman Neal)