Bartonking6014
The immunogenicity of the SARS-CoV-2 proteome is largely unknown, especially for non-structural proteins and accessory proteins. In this study, we collect 2,360 COVID-19 sera and 601 control sera. We analyze these sera on a protein microarray with 20 proteins of SARS-CoV-2, building an antibody response landscape for immunoglobulin (Ig)G and IgM. Non-structural proteins and accessory proteins NSP1, NSP7, NSP8, RdRp, ORF3b, and ORF9b elicit prevalent IgG responses. The IgG patterns and dynamics of non-structural/accessory proteins are different from those of the S and N proteins. The IgG responses against these six proteins are associated with disease severity and clinical outcome, and they decline sharply about 20 days after symptom onset. In non-survivors, a sharp decrease of IgG antibodies against S1 and N proteins before death is observed. The global antibody responses to non-structural/accessory proteins revealed here may facilitate a deeper understanding of SARS-CoV-2 immunology.SARS-CoV-2 vaccines are effective in preventing COVID-19. Patients with cancer are at high risk for severe COVID-19 and are appropriately prioritized for vaccination. Several studies in this issue of Cancer Cell add to our knowledge of the heterogeneity of immune responses to vaccination among patients with cancer and identify important areas for future research.The pathogenic significance of nucleotide variants commonly relies on nucleotide position within the gene, with exonic changes generally attributed to quantitative or qualitative alteration of protein biosynthesis, secretion, activity, or clearance. However, these changes may exert pleiotropic effects on both protein biology and mRNA splicing due to the overlapping of the amino acid and splicing codes, thus shaping the disease phenotypes. Here, we focused on hemophilia A, in which the definition of F8 variants' causative role and association to bleeding phenotypes is crucial for proper classification, genetic counseling, and management of affected individuals. We extensively characterized a large panel of hemophilia A-causing variants (n = 30) within F8 exon 19 by combining and comparing in silico and recombinant expression analyses. We identified exonic variants with pleiotropic effects and dissected the altered protein features of all missense changes. Importantly, results from multiple prediction algorithms provided qualitative results, while recombinant assays allowed us to correctly infer the likely phenotype severity for 90% of variants. Molecular characterization of pathogenic variants was also instrumental for the development of tailored correction approaches to rescue splicing affecting variants or missense changes impairing protein folding. A single engineered U1snRNA rescued mRNA splicing of nine different variants and the use of a chaperone-like drug resulted in improved factor VIII protein secretion for four missense variants. Overall, dissection of the molecular mechanisms of a large panel of HA variants allowed precise classification of HA-affected individuals and favored the development of personalized therapeutic approaches.Gonadal development begins in the intrauterine phase and females from most species are born with an established oocyte reserve. mTOR inhibitor Exposure to drugs during gestation can compromise the offspring health, also affecting the gametes quality. Nicotine, the main component of cigarettes, is an oxidant agent capable of altering the fertility in men and women. As female gametes are susceptible to oxidative stress, this drug can damage the oolemma and affect oocyte maturation, induce errors during chromosomal segregation and DNA fragmentation. Oocyte mitochondria are particularly susceptible to injuries, contributing to the oocyte quality loss and embryonic development disruption. Thus, considering the high number of women who smoke during pregnancy, while significant events are occurring in the embryo for future fertility of offspring, we seek to verify the quality of the oocytes from adult rats exposed to nicotine during intrauterine phase and breastfeeding. Pregnant Wistar rats received nicotine by osmotic mini-pumps and the female progenies were evaluated in adulthood for oocyte quality (viability, lipid peroxidation, generation of reactive oxygen species and mitochondrial integrity) and reproductive capacity. Embryos (3dpc) and fetuses (20dpc) generated by these rats were also evaluated. The results showed that the dose of 2 mg/kg/day of nicotine through placenta and breast milk does not affect the number of oocytes and the fertility capacity of adult rats. However, it causes some morphological alterations in oocytes, mitochondrial changes, embryonic fragmentation and disruption of fetal development. The malformations in fetuses generated from these gametes can also indicate the occurrence of epigenetic modifications.Bisphenol-A (BPA) is an environmental endocrine disruptor and impairs learning and memory. However, the direct evidence for BPA exposure affecting neural circuits has been limited. In this study, a virus tracing assay has been established to explore the brain's neural circuits. Thy1-Cre mice were used to investigate the effects of BPA on the neural projection of glutamatergic pyramidal neurons in hippocampal CA1 based on Thy1 promoter. These transgenic mice were orally exposed to BPA (0, 0.5 mg/kg/day) from postnatal day (PND) 0 to PND60 and then subjected to behavioral tests. Morris water maze(MWM)and Barnes maze's showed that the spatial memory was seriously impaired in BPA exposed Thy1-Cre mice. Virus tracing assay indicated that CA1 pyramidal neurons mainly received neural inputs from hippocampal CA3, entorhinal cortex (EC), and medial septum (MS). The analysis showed that BPA reduced the number of RV+ neurons in CA3 and EC but not MS. The immunohistochemistry experiment displayed that BPA decreased the percentage of CaMKIIRV+ cells in CA3 and EC. The results demonstrated that the synaptic connection of upstream glutamatergic neurons and CA1 pyramidal cells was weakened by BPA exposure. These point to potentially detrimental effects of BPA exposure on the excitatory neural circuit of CA3-CA1 and EC-CA1 in memory formation. Thus, our findings revealed that the decrease in excitatory neural circuits of CA3-CA1 and EC-CA1 contribute to the BPA-induced spatial memory deficits in Thy1-Cre mice.