Bartonholbrook8128

Z Iurium Wiki

Photoswitchable diarylethenes (DAEs), over years of intense fundamental and applied research, have been established among the most commonly chosen molecular photoswitches, often employed as controlling units in molecular devices and smart materials. At the same time, providing reliable explanation for their photophysical behavior, especially the mechanism of the photo-cycloreversion transformation, turned out to be a highly challenging task. Herein, we investigate this mechanism in detail by means of multireference semi-empirical quantum chemistry calculations, allowing, for the first time, for a balanced treatment of the static and dynamic correlation effects, both playing a crucial role in DAE photochemistry. In the course of our study, we find the second singlet excited state of double electronic-excitation character to be the key to understanding the nature of the photo-cycloreversion transformation in DAE molecular photoswitches.Carbon-carbon coupling is an important step in many catalytic reactions, and performing sp3-sp3 carbon-carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C-I cleavage and selective sp3-sp3 carbon-carbon coupling to produce ethane. Furthermore, we perform ab initio kinetic Monte Carlo simulations that include the effect of the iodine atom, which was previously considered a bystander species. We find that model NiAu surfaces exhibit a similar chemistry to PdAu, but the reason for the similarity is due to the role the iodine atoms play in terms of blocking the Ni atom active sites. https://www.selleckchem.com/products/3-methyladenine.html Specifically, on NiAu SAAs, the iodine atoms outcompete the methyl groups for occupancy of the Ni sites leaving the Me groups on Au, while on PdAu SAAs, the binding strengths of methyl groups and iodine atoms at the Pd atom active site are more similar. These simulations shed light on the mechanism of this important sp3-sp3 carbon-carbon coupling chemistry on SAAs. Furthermore, we discuss the effect of the iodine atoms on the reaction energetics and make an analogy between the effect of iodine as an active site blocker on this model heterogeneous catalyst and homogeneous catalysts in which ligands must detach in order for the active site to be accessed by the reactants.Carbon nanotube porins (CNTPs) are biomimetic membrane channels that demonstrate excellent biocompatibility and unique water and ion transport properties. Gating transport in CNTPs with external voltage could increase control over ion flow and selectivity. Herein, we used continuum modeling to probe the parameters that enable and further affect CNTP gating efficiency, including the size and composition of the supporting lipid membrane, slip flow in the carbon nanotube, and the intrinsic electronic properties of the nanotube. Our results show that the optimal gated CNTP device consists of a semiconducting CNTP inserted into a small membrane patch containing an internally conductive layer. Moreover, we demonstrate that the ionic transport modulated by gate voltages is controlled by the charge distribution along the CNTP under the external gate electric potential. The theoretical understanding developed in this study offers valuable guidance for the design of gated CNTP devices for nanofluidic studies, novel biomimetic membranes, and cellular interfaces in the future.We determined the phase boundaries of aqueous mixtures containing colloidal rod-like fd-viruses and polystyrene spheres using diffusing-wave spectroscopy and compared the results with free volume theory predictions. Excluded volume interactions in mixtures of colloidal rods and spheres lead to mediated depletion interactions. The strength and range of this attractive interaction depend on the concentrations of the particles, the length L and diameter D of the rods, and the radius R of the spheres. At strong enough attraction, this depletion interaction leads to phase separation. We experimentally determined the rod and sphere concentrations where these phase transitions occur by systematically varying the size ratios L/R and D/R and the aspect ratio L/D. This was done by using spheres with different radii and modifying the effective diameter of the rods through either the ionic strength of the buffer or anchoring a polymeric brush to the surface of the rods. The observed phase transitions were from a binary fluid to a colloidal gas/liquid phase coexistence that occurred already at very low concentrations due to the depletion efficiency of highly anisotropic rods. The experimentally measured phase transitions were compared to phase boundaries obtained using free volume theory (FVT), a well established theory for calculating the phase behavior of colloidal particles mixed with depletants. We find good correspondence between the experimental phase transitions and the theoretical FVT model where the excluded volume of the rod-like depletants was explicitly accounted for in both the reservoir and the system.Small clusters have captured the imaginations of experimentalists and theorists alike for decades. In addition to providing insight into the evolution of properties between the atomic or molecular limits and the bulk, small clusters have revealed a myriad of fascinating properties that make them interesting in their own right. This perspective reviews how the application of anion photoelectron (PE) spectroscopy, typically coupled with supporting calculations, is particularly well-suited to probing the molecular and electronic structure of small clusters. Clusters provide a powerful platform for the study of the properties of local phenomena (e.g., dopants or defect sites in heterogeneous catalysts), the evolution of the band structure and the transition from semiconductor to metallic behavior in metal clusters, control of electronic structures of clusters through electron donating or withdrawing ligands, and the control of magnetic properties by interactions between the photoelectron and remnant neutral states, among other important topics of fundamental interest. This perspective revisits historical, groundbreaking anion PE spectroscopic finding and details more recent advances and insight gleaned from the PE spectra of small covalently or ionically bound clusters. The properties of the broad range of systems studied are uniquely small-cluster like in that incremental size differences are associated with striking changes in stability, electronic structures, and symmetry, but they can also be readily related to larger or bulk species in a broader range of materials and applications.Very recently, the construction of twist actuators from magnetorheological gels and elastomers has been suggested. These materials consist of magnetizable colloidal particles embedded in a soft elastic polymeric environment. The twist actuation is enabled by a net chirality of the internal particle arrangement. Upon magnetization by a homogeneous external magnetic field, the systems feature an overall torsional deformation around the magnetization direction. link2 Starting from a discrete minimal mesoscopic model setup, we work toward a macroscopic characterization. The two scales are linked by identifying expressions for the macroscopic system parameters as functions of the mesoscopic model parameters. In this way, the observed behavior of a macroscopic system can, in principle, be mapped to and illustratively be understood from an appropriate mesoscopic picture. link3 Our results apply equally well to corresponding soft electrorheological gels and elastomers.We develop a fast method for computing the electrostatic energy and forces for a collection of charges in doubly periodic slabs with jumps in the dielectric permittivity at the slab boundaries. Our method achieves spectral accuracy by using Ewald splitting to replace the original Poisson equation for nearly singular sources with a smooth far-field Poisson equation, combined with a localized near-field correction. Unlike existing spectral Ewald methods, which make use of the Fourier transform in the aperiodic direction, we recast the problem as a two-point boundary value problem in the aperiodic direction for each transverse Fourier mode for which exact analytic boundary conditions are available. We solve each of these boundary value problems using a fast, well-conditioned Chebyshev method. In the presence of dielectric jumps, combining Ewald splitting with the classical method of images results in smoothed charge distributions, which overlap the dielectric boundaries themselves. We show how to preserve the spectral accuracy in this case through the use of a harmonic correction, which involves solving a simple Laplace equation with smooth boundary data. We implement our method on graphical processing units and combine our doubly periodic Poisson solver with Brownian dynamics to study the equilibrium structure of double layers in binary electrolytes confined by dielectric boundaries. Consistent with prior studies, we find strong charge depletion near the interfaces due to repulsive interactions with image charges, which points to the need for incorporating polarization effects in understanding confined electrolytes, both theoretically and computationally.The 2D ordering of bacteriorhodopsins in a lipid bilayer was studied using a binary hard-disk model. The phase diagrams were calculated taking into account the lateral depletion effects. The critical concentrations of the protein ordering for monomers and trimers were obtained from the phase diagrams. The critical concentration ratio agreed well with the experiment when the repulsive core interaction between the depletants, namely, lipids, was taken into account. The results suggest that the depletion effect plays an important role in the association behaviors of transmembrane proteins.We studied (NaSCN)2(H2O)n - clusters in the gas phase using size-selected anion photoelectron spectroscopy. The photoelectron spectra and vertical detachment energies of (NaSCN)2(H2O)n - (n = 0-5) were obtained in the experiment. The structures of (NaSCN)2(H2O)n -/0 up to n = 7 were investigated with density functional theory calculations. Two series of peaks are observed in the spectra, indicating that two types of structures coexist, the high electron binding energy peaks correspond to the chain style structures, and the low electron binding energy peaks correspond to the Na-N-Na-N rhombic structures or their derivatives. For the (NaSCN)2(H2O)n - clusters at n = 3-5, the Na-N-Na-N rhombic structures are the dominant structures, the rhombic four-membered rings start to open at n = 4, and the solvent separated ion pair (SSIP) type of structures start to appear at n = 6. For the neutral (NaSCN)2(H2O)n clusters, the Na-N-Na-N rhombic isomers become the dominant starting at n = 3, and the SSIP type of structures start to appear at n = 5 and become dominant at n = 6. The structural evolution of (NaSCN)2(H2O)n -/0 (n = 0-7) confirms the possible existence of ionic clusters such as Na(SCN)2 - and Na2(SCN)+ in NaSCN aqueous solutions.

Autoři článku: Bartonholbrook8128 (Guldbrandsen Thybo)