Barkerskov9803

Z Iurium Wiki

Due to enhancing serotonergic and noradrenergic neurotransmission, moclobemide may influence seizure phenomena. In this study, we examined the effect of both acute and chronic treatment with moclobemide on seizures and the action of first-generation antiepileptic drugs valproate, carbamazepine, phenobarbital and phenytoin.

The effect of moclobemide on seizures was assessed in the electroconvulsive threshold test, while its influence on antiepileptic drugs was estimated in the maximal electroshock test in mice. Undesired effects were evaluated in the chimney test (motor impairment) and step-through passive-avoidance task (long-term memory deficits). Finally, brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay.

Given acutely, moclobemide at 62.5 and 75mg/kg increased the electroconvulsive threshold. In contrast, chronic treatment with moclobemide up to 75mg/kg did not influence this parameter. Acute moclobemide applied at subthreshold doses (up to 50mg/kg) enhan the case of certain antiepileptic drugs combined with moclobemide, their doses should be adjusted downwards.

Acute and chronic therapy with moclobemide can increase the effectiveness of some antiepileptic drugs against the maximal electroshock test. In mice, this effect was, at least partially, due to pharmacokinetic interactions. So far as the results of experimental studies can be transferred to clinical conditions, moclobemide seems safe for the application in patients with epilepsy and depression. Possibly, in the case of certain antiepileptic drugs combined with moclobemide, their doses should be adjusted downwards.The abuse of synthetic cathinones ("bath salts") with psychomotor stimulant and/or entactogenic properties emerged as a public health concern when they were introduced as "legal" alternatives to drugs of abuse such as cocaine or MDMA. In this study, experiments were conducted in nonhuman primates to examine how differences in transporter selectivity might impact the reinforcing effects of synthetic cathinones. Rhesus monkeys (N = 5) were trained to respond for intravenous injections under a fixed-ratio (FR) 30, timeout 60-s schedule of reinforcement. The reinforcing effects of selected cathinones (e.g., MDPV, αPVP, MCAT, and methylone) with a range of pharmacological effects at dopamine and serotonin transporters were compared to cocaine and MDMA using dose-response analysis under a simple FR schedule and behavioral economic procedures that generated demand curves for two doses of each drug. Results show that one or more doses of all drugs were readily self-administered in each subject and, excepting MDMA (21 injections/session), peak levels of self-administration were similar across drugs (between 30 and 40 injections/session). Demand elasticity for the peak and the peak + 1/2-log dose of each drug did not significantly differ, and when data for the two doses were averaged for each drug, the following rank-order of reinforcing strength emerged cocaine > MCAT = MDPV = methylone > αPVP = MDMA. These results indicate that the reinforcing strength of synthetic cathinones are not related to their selectivity in binding dopamine or serotonin transporter sites.This study was designed to examine the effects of intra- nucleus accumbens (NAc) of BDNF receptor antagonist ANA-12 on the acquisition and expression and intra- medial-prefrontal cortex (mPFC) of ANA-12 on the extinction and reinstatement of morphine-induced conditioned place preference (CPP) and also BDNF levels and apoptotic neurons in the NAc and mPFC of rats. LDN-212854 research buy In this study, adult male Wistar rats (200-250 g) were used. Two separate cannulas were inserted bilaterally into the NAc and/or mPFC. ANA-12 (3 μg/0.5 μl/side) was injected into the NAc and/or mPFC to evaluate the rewarding effects of morphine using a CPP paradigm. Then, the levels of BDNF and apoptotic in the NAc and mPFC were assessed at the end of each treatment phase using ELISA and TUNEL methods, respectively. All of vehicle-treated rats following morphine CPP showed the increase of BDNF levels and apoptotic neurons in the NAc and mPFC. ANA-12 significantly attenuated the acquisition and expression of morphine-induced CPP, BDNF levels and apoptotic neurons in the NAc during the acquisition, but not the expression phase. Also, ANA-12 significantly facilitated the extinction, but no effect on reinstatement of morphine CPP, and decreased BDNF levels and apoptotic neurons in the mPFC during the extinction, but not the reinstatement. We conclude that blocking TrkB with ANA-12 showed therapeutic effects on morphine-associated reward memory and neuronal death in the NAc and mPFC induced by morphine CPP. Thus, the BDNF-TrkB signaling may be important in the acquisition, expression, extinction, but not the reinstatement of morphine CPP.The circadian system organizes circadian rhythms (biological cycles that occur around 24 h) that couple environmental cues (zeitgebers) with internal functions of the organism. The misalignment between circadian rhythms and external cues is known as chronodisruption and contributes to the development of mental, metabolic and other disorders, including cancer, cardiovascular diseases and addictive disorders. Drug addiction represents a global public health concern and affects the health and well-being of individuals, families and communities. In this manuscript, we reviewed evidence indicating a bidirectional relationship between the circadian system and the development of addictive disorders. We provide information on the interaction between the circadian system and drug addiction for each drug or drug class (alcohol, cannabis, hallucinogens, psychostimulants and opioids). We also describe evidence showing that drug use follows a circadian pattern, which changes with the progression of addiction. Furthermore, clock gene expression is also altered during the development of drug addiction in many brain areas related to drug reward, drug seeking and relapse. The regulation of the glutamatergic and dopaminergic neurocircuitry by clock genes is postulated to be the main circadian mechanism underlying the escalation of drug addiction. The bidirectional interaction between the circadian system and drug addiction seems to be mediated by the effects caused by each drug or class of drugs of abuse. These studies provide new insights on the development of successful strategies aimed at restoring/stabilizing circadian rhythms to reduce the risk for addiction development and relapse.Neurodevelopmental abnormalities are associated with cognitive dysfunction in schizophrenia. In particular, deficits of working memory, are consistently observed in schizophrenia, reflecting prefrontal cortex (PFc) dysfunction. To elucidate the mechanism of such deficits in working memory, the pathophysiological properties of PFc neurons and synaptic transmission have been studied in several developmental models of schizophrenia. Given the pathogenetic heterogeneity of schizophrenia, comparison of PFc synaptic transmission between models of prenatal and postnatal defect would promote our understanding on the developmental components of the biological vulnerability to schizophrenia. In the present study, we investigated the excitatory synaptic transmission onto pyramidal cells localized in layer 5 of the medial PFc (mPFc) in two developmental models of schizophrenia gestational methylazoxymethanol acetate (MAM) administration and post-weaning social isolation (SI). We found that both models exhibited defective spatial working memory, as indicated by lower spontaneous alternations in a Y-maze paradigm. The recordings from pyramidal neurons in both models exhibited decreased spontaneous excitatory postsynaptic current (sEPSC), representing the reduction of excitatory synaptic transmission in the mPFc. Interestingly, a positive correlation between the impaired spontaneous alternation behavior and the decreased excitatory synaptic transmission of pyramidal neurons was found in both models. These findings suggest that diminished excitatory neurotransmission in the mPFc could be a common pathophysiology regardless of the prenatal and postnatal pathogenesis in developmental models of schizophrenia, and that it might underlie the mechanism of defective working memory in those models.Intense associative memories develop between drug-paired contextual cues and the drug withdrawal associated aversive feeling. They have been suggested to contribute to the high rate of relapse. Our study was aimed to elucidate the involvement of hypothalamic-pituitary-adrenocortical (HPA) axis activity in the expression and extinction of aversive memory in Swiss and C57BL/6J (B6) mice. The animals were rendered dependent on morphine by i.p. injection of increasing doses of morphine (10-60 mg/kg). The negative state associated with naloxone (1 mg/kg s.c.) precipitated morphine withdrawal was examined by using conditioned place aversion (CPA) paradigm. B6 mice obtained a higher aversion score and took longer to extinguish the aversive memory than Swiss mice. In addition, corticosterone levels were increased after CPA expression. Moreover, corticosterone levels were decreased during CPA extinction in Swiss mice without changes in B6 mice. Pre-treatment with the selective CRF1 receptor antagonist CP-154,526 before naloxone, impaired morphine-withdrawal aversive memory acquisition and decreased the extinction period. CP-154,526 also antagonized the increased levels of corticosterone observed after CPA expression in Swiss mice, without any changes in B6 mice. These results indicate that HPA axis could be a critical factor governing opioid withdrawal memory storage and retrieval, but in a strain or stock-specific manner. The differences observed between Swiss and B6 mice suggest that the treatment of addictive disorders should consider different individual predisposition to associate the aversive learning with the context.Cannabis use has been increasing in recent years, particularly among women, and one of the most common uses of cannabis for medical purposes is pain relief. Pain conditions and response to analgesics have been demonstrated to be influenced by sex, and evidence is emerging that this is also true with cannabinoid-mediated analgesia. In this review we evaluate the preclinical evidence supporting sex differences in cannabinoid pharmacology, as well as emerging evidence from human studies, both clinical and observational. Numerous animal studies have reported sex differences in the antinociceptive response to natural and synthetic cannabinoids that may correlate to sex differences in expression, and function, of endocannabinoid system components. Female rodents have generally been found to be more sensitive to the effects of Δ9-THC. This finding is likely a function of both pharmacokinetic and pharmacodynamics factors including differences in metabolism, differences in cannabinoid receptor expression, and influence of ovarian hormones including estradiol and progesterone. Preclinical evidence supporting direct interactions between sex hormones and the endocannabinoid system may translate to sex differences in response to cannabis and cannabinoid use in men and women. Further research into the role of sex in endocannabinoid system function is critical as we gain a deeper understanding of the impact of the endocannabinoid system in various disease states, including chronic pain.

Autoři článku: Barkerskov9803 (Dalby Ashley)