Aycockfigueroa2065
In line with our expectations, on the behavioral level, our task elicited the all-or-none performance in preschoolers. There was also a progression of performance with age in the FB condition. On the neural level, we observed the activation of structures involved in the ToM brain network in response to our task in both adults and children. The results therefore suggest that our task can be a useful tool for studying ToM development and its neural underpinnings. Copyright © 2020 Wysocka, Golec, Haman, Wolak, Kochański and Pluta."Locked-in" patients lose their ability to communicate naturally due to motor system dysfunction. Brain-computer interfacing offers a solution for their inability to communicate by enabling motor-independent communication. Straightforward and convenient in-session communication is essential in clinical environments. The present study introduces a functional near-infrared spectroscopy (fNIRS)-based binary communication paradigm that requires limited preparation time and merely nine optodes. Eighteen healthy participants performed two mental imagery tasks, mental drawing and spatial navigation, to answer yes/no questions during one of two auditorily cued time windows. Each of the six questions was answered five times, resulting in five trials per answer. This communication paradigm thus combines both spatial (two different mental imagery tasks, here mental drawing for "yes" and spatial navigation for "no") and temporal (distinct time windows for encoding a "yes" and "no" answer) fNIRS signal features for informants' physical features was administered to explore its predictive value for evaluating general data quality. Obtained questionnaire scores correlated significantly (r = -0.499) with the signal-to-noise of the raw light intensities. While more work is needed to further increase decoding accuracy, this study shows the potential of answer encoding using spatiotemporal fNIRS signal features or spatial fNIRS signal features only. Copyright © 2020 Nagels-Coune, Benitez-Andonegui, Reuter, Lührs, Goebel, De Weerd, Riecke and Sorger.Honeybees (Apis mellifera) have fascinating navigational skills and learning capabilities in the field. To decipher the mechanisms underlying place learning in honeybees, we need paradigms to study place learning of individual honeybees under controlled laboratory conditions. Here, we present a novel visual place learning arena for honeybees which relies on high temperatures as aversive stimuli. Honeybees learn to locate a safe spot in an unpleasantly warm arena, relying on a visual panorama. Bees can solve this task at a temperature of 46°C, while at temperatures above 48°C bees die quickly. This new paradigm, which is based on pioneering work on Drosophila, allows us now to investigate thermal-visual place learning of individual honeybees in the laboratory, for example after controlled genetic knockout or pharmacological intervention. Copyright © 2020 Scheiner, Frantzmann, Jäger, Mitesser, Helfrich-Förster and Pauls.Among female rats, mating enhances neurosteroid formation in the midbrain ventral tegmental area (VTA; independent of peripheral steroid-secreting glands, ovaries, and adrenals). The sources/targets for these actions are not well understood. In Experiment 1, proestrous rats engaged in a mating paradigm, or did not, and the midbrains had been assessed via the Affymetrix rat genome microarrays. In Experiment 2, the influence of gonadal and adrenal glands on the expression of these genes was assessed in rats that were proestrous, ovariectomized (OVX), or OVX and adrenalectomized (ADX). The microarrays revealed 53 target genes that were significantly up-regulated (>2.0-fold change) in response to mating. Mating significantly enhanced the midbrain mRNA expression of genes involved in hormonal and trophic actions Gh1, S100g, and Klk1b3 in proestrous, but not OVX and/or ADX, rats; Fshb in all but OVX/ADX rats; and lutenizing hormone β and thyroid-stimulating hormone (TSH) β in all rats. Thus, mating enhances midbrain gene expression independent and dependent of peripheral glands. Copyright © 2020 Frye and Chittur.There are several technical challenges to obtaining high-quality recordings of cochlear potentials in human electrocochleography (ECochG). These challenges include electrical artifacts from devices such as acoustic transducers, biological artifacts from excessive myogenic and electroencephalographic potentials, and issues associated with the placement of a tympanic membrane (TM) electrode on the eardrum. This article presents approaches for dealing with these challenges for ECochG measurement using a TM electrode. YD23 Emphasis is placed on eliminating stimulus artifact, optimizing the placement of the electrode, and comparing a custom-made electrode with a commercially-available electrode. This comparison revealed that the custom-made electrode results in greater subject comfort, superior ease of placing the electrode on the eardrum, and larger compound action potential (CAP) amplitudes. Copyright © 2020 Simpson, Jennings and Margolis.The structure of the human brain has been studied extensively. Despite all the knowledge accrued, direct information about connections, from origin to termination, in the human brain is extremely limited. Yet there is a widespread misperception that human connectional neuroanatomy is well-established and validated. In this article, we consider what is known directly about human structural and connectional neuroanatomy. Information on neuroanatomical connections in the human brain is derived largely from studies in non-human experimental models in which the entire connectional pathway, including origins, course, and terminations, is directly visualized. Techniques to examine structural connectivity in the human brain are progressing rapidly; nevertheless, our present understanding of such connectivity is limited largely to data derived from homological comparisons, particularly with non-human primates. We take the position that an in-depth and more precise understanding of human connectional neuroanatomy will be obtained by a systematic application of this homological approach. Copyright © 2020 Rushmore, Bouix, Kubicki, Rathi, Yeterian and Makris.