Axelsenlowry8928

Z Iurium Wiki

In many ecosystems, the zooplankton community has been pressured simultaneously by microplastic pollution and alterations resulting from global climate changes. The potential influence of light intensity rise (from 10,830 lx to 26,000 lx) and water temperature rise (from 20 °C to 25 °C) on the long term-toxicity of microplastics (MPs) to Daphnia magna were investigated. Three 21-day laboratory bioassays with model MPs (1-5 μm diameter) were carried out at (i) 20 °C/10830 lx, (ii) 20 °C/26000 lx, and (iii) 25 °C/10830 lx. In each bioassay, one control (no MPs) and three MP concentrations (0.04, 0.09, 0.19 mg/L) were tested. In all the bioassays, MPs caused parental and juvenile mortality, and reduced the somatic growth, reproduction and population growth rate. The MP EC50s on living offspring (95% confidence interval within brackets) were 0.146 mg/L (0.142-0.151 mg/L) at 20 °C/10830 lx, 0.102 mg/L (0.099-0.105 mg/L) at 20 °C/26000 lx, and 0.101 mg/L (0.098-0.104 mg/L) at 25 °C/10830 lx. Relatively to the respective control group, 0.19 mg/L of MPs decreased the mean of the population growth rate by 27% at 20 °C/10830 lx, 38% at 20 °C/26000 lx and 59% at 25 °C/10830 lx. Based on the population growth rate and in relation to 20 °C/10830 lx (control, no MPs), the interaction between increased light intensity (26,000 lx) and MPs was synergism (at all the MP concentrations tested). The interaction between water temperature rise (25 °C) and MPs was antagonism at 0.04 mg/L of MPs and synergism at 0.09 and 0.19 mg/L of MPs. In the present scenario of climate changes and global MP pollution such findings raise high concern because zooplankton communities are crucial for aquatic biodiversity conservation, ecosystem functioning and services provided to humans. Further studies on the combined effects of MPs, other common pollutants, and alterations due to climate changes are needed.Biofilms play a key role in aquatic ecosystems. They are ubiquitous, even in the most contaminated ecosystems, and have great potential as biomonitors of exposure to contaminants such as metals. Freshwater biofilms and surface waters were sampled in two active mining areas of Canada in the northern part of Nunavik (Quebec) and in the Greater Sudbury area (Ontario). Significant linear relationships were found between both total dissolved and free metal ion concentrations with biofilm metal contents for Cu and Ni, but not for Cd. When pH was below 6, biofilms accumulated less metals than at higher pHs. These results confirm that protons have a protective effect, leading to lower internalized metal concentrations. When considering only the sites where pH was above 6, the linear relationships between metal concentrations in water and in biofilms were improved for all three studied metals. The presence of metal ions could also modify the internalization of a given metal. To further study the role of cations as competitors to Cu, Ni and Cd uptake, relationships between the ratio of biofilm metal contents (Cu, Ni and Cd) on the ambient free metal ion concentrations were built as a function of potential cation competitors, such as major cations and metals. Surprisingly, our data suggest that calcium plays a minor role in preventing metal accumulation as compared to magnesium and possibly other metals. At a global scale, metal accumulation remained highly consistent between the two studied regions and over the sampling period, despite differences in ambient physicochemical water characteristics, climate or types of ecosystems. Metal bioaccumulation is thus a promising biomarker to assess metal bioavailability in a mining context. Nevertheless, more data are still required to further highlight the contribution of each competitor in metal accumulation by biofilms and to be able to build a unifying predictive model.Microbes interact with each other in response to various environmental changes in coastal marine ecosystems. To explore how the macroenvironment (environmental filtering) and species-engineered microenvironment (niche construction) affect the ecological network of the marine microbiome in the highly dynamic coastal waters of Korea, we analyzed the modular structures of the microbial community and identified microbial interconnections in different size fractions for a year. Fluctuations in the macroenvironment, such as temperature and nutrient concentrations driven by seasonal changes, are the major factors in determining successive microbial modules. Compared to particle-associated (PA) microbes, free-living (FL) microbes seemed to be more affected by macroenvironmental filtering. Modules related to nutrients were further divided into various modules according to different lifestyles. In addition, a large transient discharge of the Changjiang (Yangtze River) in summer also formed a distinct microbial module, which was related to the high ammonia concentration arising from phytoplankton degradation. Microbes belonging to the SAR11, SAR86, and SAR116 clades, Flavobacteriaceae, and MG IIa-L showed repeated interconnections in temperature-related modules, while the SAR202 clade, Marinimicrobia, DEV007 clade, and Arctic97B-4 and Sva0996 marine groups displayed repeated connections in nutrient-related modules. These 'skeleton'-forming microbes created species-engineered microenvironments, further fine-tuning microbial modular structures. Furthermore, they serve as keystone species for module stability by linking interdependent microbial partners within their own modules through universally beneficial metabolic activities. Therefore, they could reinforce the ecological resilience of microbial communities under abiotic and biotic perturbations in dynamic coastal waters. In conclusion, both macro- and micro-environmental filtering were important for determining the seasonal succession of microbial community structures.With the emerging need of nutrient recycling in resource recovery facilities, the use of microalgae-bacteria flocs has received considerable attention in the past few years. However, although the main biological processes are already known, the complex interactions occurring between algae and bacteria are not fully understood. In this work, a combined respirometric-titrimetric unit was used to assess the microorganisms' kinetics within microalgae-bacteria flocs under different growth regimes (i.e. selleckchem photoautotrophic, heterotrophic and mixotrophic) and different ratios of inorganic (IC) to organic carbon (OC) (ICOC-ratios). Using this respirometric-titrimetric data, a new model was developed, calibrated and successfully validated. The model takes into account the heterotrophic growth of bacteria, the photoautotrophic, heterotrophic and mixotrophic growth of algae and the production and consumption of extracellular polymeric substances (EPS) by both bacteria and algae. As such, the model can be used for detailed analysis of the carbon fluxes within microalgae-bacteria flocs in an efficient way.

Autoři článku: Axelsenlowry8928 (Taylor Keating)