Avilabrix3474
However, since science confidence increased over the course for both groups, these findings indicate that while students who participated in a BR-RE valued it, broadly relevant research experiences may not be necessary for positive outcomes for non-majors.Lanthanide-doped NaYF4 nanoparticles are most frequently studied host materials for numerous biomedical applications. ACY-1215 datasheet Although efficient upconversion can be obtained in fluoride nanomaterials and good homogeneity of size and morphology is achieved, they are not very predestined for extensive material optimization toward enhanced features and functions. Here, we study the impact of rare-earth metals RE = Y, Lu, La, and Gd ions within Yb3+/Er3+ codoped nanocrystalline REPO4 orthophosphates. The enhanced luminescent thermometry features were found to be in relation to the covalency of RE3+-O2- bonds being modulated by these optically inactive rare-earth ion substitutes. Up to 30% relative sensitivity enhancement was found (from ca. 3.0 to ca. 3.8%/K at -150 °C) by purposefully increasing the covalence of the RE3+-O2- bond. These studies form the basis for intentional optimization thermal couple-based luminescent thermometers such as Yb3+-Er3+ upconverting ratiometric thermometer.Solid electrolytes are key elements for next-generation energy storage systems. To design powerful electrolytes with high ionic conductivity, we need to improve our understanding of the mechanisms that are at the heart of the rapid ion exchange processes in solids. Such an understanding also requires evaluation and testing of methods not routinely used to characterize ion conductors. Here, the ternary Li4MCh4 system (M = Ge, Sn; Ch = Se, S) provides model compounds to study the applicability of 7Li nuclear magnetic resonance (NMR) spin-alignment echo (SAE) spectroscopy to probe slow Li+ exchange processes. Whereas the exact interpretation of conventional spin-lattice relaxation data depends on models, SAE NMR offers a model-independent, direct access to motional correlation rates. Indeed, the jump rates and activation energies deduced from time-domain relaxometry data perfectly agree with results from 7Li SAE NMR. In particular, long-range Li+ diffusion in polycrystalline Li4SnS4 as seen by NMR in a dynamic range covering 6 orders of magnitude is determined by an activation energy of Ea = 0.55 eV and a pre-exponential factor of 3 × 1013 s-1. The variation in Ea and 1/τ0 is related to the LiCh4 volume that changes within the four Li4MCh4 compounds studied. The corresponding volume of Li4SnS4 seems to be close to optimum for Li+ diffusivity.Na-ion batteries (NIBs) are emerging as promising energy storage devices for large-scale applications. Great research efforts are devoted to design new effective NIB electrode materials, especially for the anode side. A hybrid 2D heterojunction with graphene and MoS2 has been recently proposed for this purpose while MoS2 has shown good reversible capacity as a NIB anode, graphene is expected to improve conductivity and resistance to mechanical stress upon cycling. The most relevant processes for the anode are the intercalation and diffusion of the large Na ion, whose complex mechanisms are determined by the structural and electronic features of the MoS2/graphene interface. Understanding these processes and mechanisms is crucial for developing new nanoscale anodes for NIBs with high performances. To this end, here we report a state-of-the-art DFT study to address (a) the structural and electronic properties of heterointerfaces between the MoS2 monolayers and graphene, (b) the most convenient insertion sites foced electrode materials for efficient NIBs.We have observed for the first time the surface-enhanced (SE) signal of water in an aqueous dispersion of silver nanoparticles in spontaneous (SERS) and femtosecond stimulated Raman (SE-FSRS) processes with different wavelengths of the Raman pump (515, 715, and 755 nm). By estimating the fraction of water molecules that interact with the metal surface, we have calculated enhancement factors (EF) 4.8 × 106 for SERS and (3.6-3.7) × 106 for SE-FSRS. Furthermore, we have tested the role of simultaneous plasmon resonance and Raman resonance conditions for the aν1 + bν3 overtone mode of water (755 nm) in SE-FSRS signal amplification. When the wavelength of the Raman pump is within the plasmon resonance of the metal nanoparticles, the Raman resonance has a negligible effect on the EF. However, the Raman resonance with the aν1 + bν3 mode strongly enhances the signal of the fundamental OH stretching mode of water.Monitoring a biological tissue as a three dimensional (3D) model is of high importance. Both the measurement technique and the measuring electrode play substantial roles in providing accurate 3D measurements. Bioimpedance spectroscopy has proven to be a noninvasive method providing the possibility of monitoring a 3D construct in a real time manner. On the other hand, advances in electrode fabrication has made it possible to use flexible electrodes with different configurations, which makes 3D measurements possible. However, designing an experimental measurement set-up for monitoring a 3D construct can be costly and time consuming and would require many tissue models. Finite element modeling methods provide a simple alternative for studying the performance of the electrode and the measurement set-up before starting with the experimental measurements. Therefore, in this study we employed the COMSOL Multiphysics finite element modeling method for simulating the effects of changing the electrode configuration on the impedance spectroscopy measurements of a venous segment. For this purpose, the simulations were performed for models with different electrode configurations. The simulation results provided us with the possibility of finding the optimal electrode configuration including the geometry, number and dimensions of the electrodes, which can be later employed in the experimental measurement set-up.Physiological saline (0.9% NaCl) and deionized water were frozen in a laboratory chest freezer and impedance was monitored throughout freezing and thawing. The resistive and reactive components of electrical impedance were measured for these samples during freezing and thawing (heating) within a temperature range between 20 °C and -48 °C. The impedance of saline solution and de-ionized water increases sharply at the freezing point, similar to what is known for, e.g., complex tissues, including meat. Yet, only the saline solution impedance shows another sharp increment at a temperature between -30 and -20 °C. Changes of the electric properties after solidification suggest that the latter is linked to transformations of the ice lattice structure. We conclude that the electrical properties might serve as sensitive indicators of these phase changes.