Astrupcates2779

Z Iurium Wiki

176 (1.163 and 1.189). Results from stratified analyses suggested that effects of SO2 on hypertension morbidity were more pronounced in participants less then  60 years old, tea drinkers, and those with high education, high poultry consumption, and active (occasional and frequent) exercise. We found that long-term exposure to high levels of SO2 increased the risk of incidence of hypertension in China.Quinoa is an adaptable plant that is rich in terms of nutritional properties. Currently, the promotion and cultivation of quinoa are expanding in Iran. The present study aimed to investigate the energy consumption of quinoa grain production and its environmental impacts through life cycle assessment. In this regard, in order to evaluate the environmental and energy indices, required data were collected from quinoa farmers in Isfahan. The high energy ratio (ER > 1) and positive net energy show that quinoa cultivation is efficient. Based on the results, irrigation water and nitrate fertilizer were identified as the major contributors to energy consumption. Based on the normalization method, the highest and lowest environmental impacts during the production process were related to the indices of marine aquatic ecotoxicity and ozone layer depletion, respectively. Results showed that in the global warming potential impact, 354 kg CO2eq. were emitted per production of 1 tonne of quinoa grain. Diesel fuel and nitrogen fertilizer had a significant effect on most environmental impacts. Proper management of chemical fertilizers and agricultural machinery are key factors for sustainable cultivation of quinoa.China is facing great challenges to balance its natural water resource use and eco-environment protection, especially in the north semi-arid region with large water consumption due to the rapid economic growth. This highlights the urgency to use water resource carrying capacity (WRCC) as a measure to maintain the sustainable development of the human and natural water system. Here, we used a coupled model based on the system dynamics and cellular automaton models to assess the WRCC under the critical value of water resource withdrawal ratio (40%) and its sustainability in the Yongding River watershed in Beijing-Tianjin-Hebei region, where the water use highly depends on river flow and nonrenewable groundwater resources. The analytical results showed that the current regional WRCC is severely overloaded due to strong human activities. The predicted results based on four scenarios, i.e., existing development, water saving, industrial restructuring, and integrated development schemes, showed that although the improvement of water saving and water use efficiency has mitigated the regional water shortage, evidenced by the increased WRCC, the water shortage would continue due to the increased water demand. Under the integrated development scenario, it will need at least additional 7.1 × 108 m3 water per year (Beijing 2.5 × 108 m3, Tianjin 0.8 × 108 m3, Hebei 3.8 × 108 m3) via the water transfer project to maintain the sustainability in the next decades. Our research provides recommendations for reasonable water utilization and supplementation under the severe water crisis.The co-transport of pollutants with colloidal particles to lower depths of groundwater and porous environments has been demonstrated in many studies in recent three decades. Despite the numerous researches, all experimental and numerical studies of pollutant transfer in the presence of colloidal particles have been carried out in one dimension, which causes significant errors in this phenomenon. In this study, the two-dimensional transfer experiment of chromium in the presence of bentonite colloidal particles is done in saturated porous media. In order to conduct the experiment in two-dimensional conditions, the sampling was done in central and lateral of the last experiment column section. The results have been demonstrated that the transmission along the longitudinal direction is higher than lateral in the three tests of the transfer of chromium, bentonite, and chromium in the presence of bentonite colloidal particles at the beginning of the experiment, and due to completed mixing in the section, it reached to a constant value as lateral samples. While the presence of bentonite colloidal particles facilitates the transfer of chromium in both longitudinal and lateral directions, increasing the bentonite colloidal particle concentration causes more getting stuck of colloid particles between the sand grains and reduction of the chromium transfer in both longitudinal and lateral directions. So, it can be concluded that transfer in the lateral direction is lower in bentonite colloidal particles compared with chromium, and the reason is the bentonite colloidal particles getting stuck between sand grains, which is exacerbated by increasing the concentration of the bentonite. Also, due to the chromium co-transport with colloid particles in the fraction of chromium total transport, increasing the bentonite concentration causes decreasing the chromium lateral transfer.The Loess Plateau is the largest apple cultivation region in the world. However, the role of rain-fed apple orchards as carbon sinks or sources, including the dynamic variation and influencing factors, are still unclear. In this study, the net ecosystem CO2 exchange (NEE) was monitored by an eddy covariance (EC) system in Loess Plateau apple orchards during 2016-2017. The results demonstrated that the annual NEE was higher in 2016 (- 698.0 g C m-2 year-1) than in 2017 (- 554.0 g C m-2 year-1). Particularly, the amount of orchard CO2 uptake was significantly greater in 2016 (- 772.0 g C m-2) than in 2017 (- 642.1 g C m-2) during the carbon sink period. This difference may be attributed to the higher NEE in 2016 compared to 2017 during the fast and slow growth periods. In addition, a higher daily NEE occurred to the higher air temperature (Ta), which promoted early sprouting in 2016 (- 3.91 g C m-2 day-1) compared to 2017 (- 2.86 g C m-2 day-1) during the fast growth period. The daily NEE in 2016 (- 2.59 g C m-2 day-1) was remarkably higher than that in 2017 (- 1.41 g C m-2 day-1) during the slow growth period, owing to the greater number of cloudy and rainy days and lower temperatures in 2017. Overall, the present study demonstrated the key role played by the amount of precipitation and temperature in regulating the NEE during the growth season and provided accurate quantitative information on the carbon budget in apple orchards. Graphical abstract.Underground coal mining inevitably causes land subsidence, while negatively impacting land and ecological environments. This is particularly severe in coal-grain overlap areas (CGOA) in eastern China, which have high groundwater levels. Mining subsidence has substantially altered the original topography, and raised the groundwater level, which threatens grain security in the region. Therefore, it is necessary to determine the damaged farmland area in the CGOA. The traditional method to define the range of coal mining disturbance is usually based on surface subsidence. However, this fails to consider the multidimensional impacts of coal mining on the ecology, which is considered unreasonable. click here Therefore, this paper introduces a low-cost, fast, and non-destructive method for land damage assessment in a typical CGOA in eastern China, using maize aboveground biomass (AGB) as estimated from an unmanned aerial vehicle (UAV). There were three key results from the survey. (1) underground coal mining caused significant ecological problems in the study area, including subsidence (approximately 6 m) and the degradation of vegetation (maize AGB in a range of 192.73-1338.06 g/m2). In addition, the degradation of maize was affected by subsidence (0.61** Pearson coefficient found between the AGB and surface elevation). (2) An UAV combined with multispectral and digital cameras, allowed precise estimation of the AGB and the red-edge chlorophyII index (CIrededge) combined with the elevation factor had the best explanatory power using the random forest (RF) method (R2 = 0.96, RMSE = 65.03 g/cm2). (3) The maize AGB could be used to assess land damage affected by underground coal mining, which accounted for 82.12% of the study area. The results of the study could provide a reference for land damage assessments in the CGOA, while also providing a guide for land reclamation and agricultural management decisions in the region.Pigments are present in a broad variety of terrestrial and aquatic organisms. The cannonball jellyfish (Stomolophus sp. 2) is an important fishery resource in the northwest of Mexico and is processed to be traded and consumed as seafood. During the process, water with a soluble blue pigment and other compounds are discarded to the environment. In this work, we present some properties of the blue pigment from Stomolophus sp.2 (S2bp), to decide if it could be considered as a potential value-added waste and avoid the blue proteinaceous pigment wastewater. S2bp was purified to homogeneity and had a molecular mass of 28.0 kDa; this protein exhibited a ʎmax at 650 nm, contained Zn2+ and Cu2+ metal ions, and was stable from 10 to 50 °C and in a pH range of 3.0 to 13.0 for 1 h. It had halotolerant characteristics maintaining the blue coloration in a broad range of ionic strength (0-4 M NaCl) and showed changes in ʎmax with chaotropic salts. In addition, S2bp was stable in the presence of organic acids and EDTA and in zwitterionic, anionic, and nonionic detergents at critical micellar concentration. However, oxidant reagents like NaClO and H2O2 decrease the coloration. These results show that the jellyfish pigment is a stable protein which makes it an alternative pigment for the food industry.Children are exposed to toxic metals via diet and environment, which results in adverse health effects. Several trace elements are important for the nutritional status of children; however, little information is available for rural regions in Asia. Our goal was to assess the body burden of lead, cadmium, and aluminum (Al) as toxic metals and calcium (Ca), zinc, copper, selenium (Se), strontium, and boron as trace elements in children. Multiple environmental samples, including soil, dust, fine particulates, drinking water, and food, were collected for each family. A survey was conducted by trained personnel to record detailed information about children attending a rural school. Twenty-four-hour urine samples were collected. The levels of toxic and essential trace elements were determined by inductively coupled plasma mass spectrometry. We found that the daily intake of toxic metals was below the recommended maximum, suggesting low health risks. More attention should be given to the ingestion of Al by the hand-to-mouth pathway. Ca deficiency was discovered to be a serious health problem for rural children, with Ca inadequacies reaching 96%. The excessive intake of Se-rich products from industry suggests an increased risk of toxicity. This study highlights the health risks to children who live in rural regions and the importance of dietary Ca supplementation in school meals.

Autoři článku: Astrupcates2779 (Warren Tyler)