Ankersensvane1867

Z Iurium Wiki

A large variety of methods exist to estimate brain coupling in the frequency domain from electrophysiological data measured, e.g., by EEG and MEG. Those data are to reasonable approximation, though certainly not perfectly, Gaussian distributed. This work is based on the well-known fact that for Gaussian distributed data, the cross-spectrum completely determines all statistical properties. In particular, for an infinite number of data, all normalized coupling measures at a given frequency are a function of complex coherency. However, it is largely unknown what the functional relations are. We here present those functional relations for six different measures the weighted phase lag index, the phase lag index, the absolute value and imaginary part of the phase locking value (PLV), power envelope correlation, and power envelope correlation with correction for artifacts of volume conduction. With the exception of PLV, the final results are simple closed form formulas. In an excursion we also discuss differences between short time Fourier transformation and Hilbert transformation for estimations in the frequency domain. We tested in simulations of linear and non-linear dynamical systems and for empirical resting state EEG on sensor level to what extent a model, namely the respective function of coherency, can explain the observed couplings. https://www.selleckchem.com/products/colcemid.html For empirical data we found that for measures of phase-phase coupling deviations from the model are in general minor, while power envelope correlations systematically deviate from the model for all frequencies. For power envelope correlation with correction for artifacts of volume conduction the model cannot explain the observed couplings at all. We also analyzed power envelope correlation as a function of time and frequency in an event related experiment using a stroop reaction task and found significant event related deviations mostly in the alpha range.

Investigations into the benefits of vagus nerve stimulation (VNS) through pre-clinical and clinical research have led to promising findings for treating several disorders. Despite proven effectiveness of VNS on conditions such as epilepsy and depression, understanding of off-target effects and contributing factors such as sex differences can be beneficial to optimize therapy design.

In this article, we assessed longitudinal effects of VNS on cardiovascular and immune systems, and studied potential sex differences using a rat model of long-term VNS. Rats were implanted with cuff electrodes around the left cervical vagus nerve for VNS, and wireless physiological monitoring devices for continuous monitoring of cardiovascular system using electrocardiogram (ECG) signals. ECG morphology and heart rate variability (HRV) features were extracted to assess cardiovascular changes resulting from VNS in short-term and long-term timescales. We also assessed VNS effects on expression of inflammatory cytokines in blood assessed using awake behaving rats. Although VNS did not change the concentration of inflammatory biomarkers in systemic circulation for male and female rats, we observed significant differences in cardiovascular effects of VNS characterized using ECG morphology and HRV analyses.

The contribution of sex differences for long-term VNS off-target effects on cardiovascular and immune systems was assessed using awake behaving rats. Although VNS did not change the concentration of inflammatory biomarkers in systemic circulation for male and female rats, we observed significant differences in cardiovascular effects of VNS characterized using ECG morphology and HRV analyses.

The aim of the present study was to investigate the pupillary response to word identification in cochlear implant (CI) patients. Authors hypothesized that when task difficulty (i.e., addition of background noise) increased, pupil dilation markers such as the peak dilation or the latency of the peak dilation would increase in CI users, as already observed in normal-hearing and hearing-impaired subjects.

Pupillometric measures in 10 CI patients were combined to standard speech recognition scores used to evaluate CI outcomes, namely, speech audiometry in quiet and in noise at +10 dB signal-to-noise ratio (SNR). The main outcome measures of pupillometry were mean pupil dilation, maximal pupil dilation, dilation latency, and mean dilation during return to baseline or retention interval. Subjective hearing quality was evaluated by means of one self-reported fatigue questionnaire, and the Speech, Spatial, and Qualities (SSQ) of Hearing scale.

All pupil dilation data were transformed to percent change in event-try constitutes a promising tool to improve objective quantification of CI performance in clinical settings.

The analysis of pupillometric traces, obtained during speech audiometry in quiet and in noise in CI users, provided interesting information about the different processes engaged in this task. Pupillometric measures could be indicative of listening difficulty, phoneme intelligibility, and were correlated with general hearing experience as evaluated by the SSQ of Hearing scale. These preliminary results show that pupillometry constitutes a promising tool to improve objective quantification of CI performance in clinical settings.

Red rice

(RRK), prepared by growing

species on steamed rice, has been reported to lower blood glucose levels in diabetic animal models. However, the action mechanism is not yet completely understood.

The objective of this study was to examine the mechanism underlying the hypoglycemic action of RRK extract in two diabetic animal models the insulin-deficiency mice, where the insulin deficiency was induced by streptozotocin (STZ), and insulin-resistance mice, where the insulin resistance was induced by a high-fat diet (HFD).

Low (12.5 mg/kg body weight [BW]) and high (50.0 mg/kg BW) doses of RRK extract were orally administered to the mice for 10 successive days (0.25 mL/day/mouse). The protein expression levels of glucose transporter type 4 (GLUT4) in the skeletal muscle and glucose transporter type 2 (GLUT2) in the liver were measured. Blood glucose (BG) levels of STZ-treated mice in insulin tolerance test (ITT) and BG and insulin levels of HFD-fed mice in intraperitoneal glucose tolerance test (IPGTT) were investigated.

Autoři článku: Ankersensvane1867 (Winkel McClure)