Ankersenmcgowan9349
, J. Chem. JZL184 research buy Phys. 136, 081102 (2012)]. This time-scale ordering is based on the following response functions, from fast to slow dynamics shear modulus, bulk modulus, dielectric permittivity, longitudinal thermal expansivity coefficient, and longitudinal specific heat. These findings indicate a general relation between the time scales of different response functions and, as inter-molecular interactions apparently play a subordinate role, suggest a rather generic nature of the process of structural relaxation.We derive a distribution function for the position of a tagged active particle in a slowly varying in space external potential, in a system of interacting active particles. The tagged particle distribution has the form of the Boltzmann distribution but with an effective temperature that replaces the temperature of the heat bath. We show that the effective temperature that enters the tagged particle distribution is the same as the effective temperature defined through the Einstein relation, i.e., it is equal to the ratio of the self-diffusion and tagged particle mobility coefficients. This result shows that this effective temperature, which is defined through a fluctuation-dissipation ratio, is relevant beyond the linear response regime. We verify our theoretical findings through computer simulations. Our theory fails when an additional large length scale appears in our active system. In the system we simulated, this length scale is associated with long-wavelength density fluctuations that emerge upon approaching motility-induced phase separation.We have used reflection absorption infrared spectroscopy (RAIRS) and temperature programmed reaction (TPR) to study the selective hydrogenation of acetylene on both a clean Ag(111) surface and on a Pd/Ag(111) single-atom-alloy surface. The partial hydrogenation of acetylene to ethylene is an important catalytic process that is often carried out using PdAg alloys. It is challenging to study the reaction with ultrahigh vacuum techniques because H2 does not dissociate on Ag(111), and while H2 will dissociate at Pd sites, H-atom spillover from Pd to Ag sites does not generally occur. We bypassed the H2 dissociation step by exposing the surfaces to atomic hydrogen generated by the hot filament of an ion gauge. We find that hydrogen atoms react with acetylene to produce adsorbed ethylene at 85 K, the lowest temperature studied. This is revealed by the appearance of a RAIRS peak at 950 cm-1 due to the out-of-plane wagging mode of adsorbed ethylene when acetylene is exposed to a surface on which H atoms are pre-adsorbed. The formation of both ethylene and ethane are detected with TPR, but no acetylene coupling products, such as benzene, were found. From quantitative analysis of the TPR results, the percent conversion and selectivities to ethylene and ethane were determined. Low coverages of Pd enhance the conversion but do so mainly by increasing ethane formation.The composition and structure of a membrane determine its functionality and practical application. We study the supramolecular polymeric membrane prepared by supramolecular emulsion interfacial polymerization (SEIP) on the oil-in-water droplet via the computer simulation method. The factors that may influence its structure and properties are investigated, such as the degree of polymerization and molecular weight distribution (MWD) of products in the polymeric membranes. We find that the SEIP can lead to a higher total degree of polymerization as compared to the supramolecular interfacial polymerization (SIP). However, the average chain length of products in the SEIP is lower than that of the SIP due to its obvious interface curvature. The stoichiometric ratio of reactants in two phases will affect the MWD of the products, which further affects the performance of the membranes in practical applications, such as drug release rate and permeability. Besides, the MWD of the product by SEIP obviously deviates from the Flory distribution as a consequence of the curvature of reaction interface. In addition, we obtain the MWD for the emulsions whose size distribution conforms to the Gaussian distribution so that the MWD may be predicted according to the corresponding emulsion size distribution. This study helps us to better understand the controlling factors that may affect the structure and properties of supramolecular polymeric membranes by SEIP.Experimental demonstrations of polarization-selection two-dimensional Vibrational-Electronic (2D VE) and 2D Electronic-Vibrational (2D EV) spectroscopies aim to map the magnitudes and spatial orientations of coupled electronic and vibrational coordinates in complex systems. The realization of that goal depends on our ability to connect spectroscopic observables with molecular structural parameters. In this paper, we use a model Hamiltonian consisting of two anharmonically coupled vibrational modes in electronic ground and excited states with linear and bilinear vibronic coupling terms to simulate polarization-selective 2D EV and 2D VE spectra. We discuss the relationships between the linear vibronic coupling and two-dimensional Huang-Rhys parameters and between the bilinear vibronic coupling term and Duschinsky mixing. We develop a description of the vibronic transition dipoles and explore how the Hamiltonian parameters and non-Condon effects impact their amplitudes and orientations. Using simulated polarization-selective 2D EV and 2D VE spectra, we show how 2D peak positions, amplitudes, and anisotropy can be used to measure parameters of the vibronic Hamiltonian and non-Condon effects. This paper, along with the first in the series, provides the reader with a detailed description of reading, simulating, and analyzing multimode, polarization-selective 2D EV and 2D VE spectra with an emphasis on extracting vibronic coupling parameters from complex spectra.The nicotinic acetylcholine receptor (nAChR) and other pentameric ligand-gated ion channels are native to neuronal membranes with an unusual lipid composition. While it is well-established that these receptors can be significantly modulated by lipids, the underlying mechanisms have been primarily studied in model membranes with few lipid species. Here, we use coarse-grained molecular dynamics simulation to probe specific binding of lipids in a complex quasi-neuronal membrane. We ran a total of 50 μs of simulations of a single nAChR in a membrane composed of 36 species of lipids. Competition between multiple lipid species produces a complex distribution. We find that overall, cholesterol selects for concave inter-subunit sites and polyunsaturated fatty acids select for convex M4 sites, while monounsaturated and saturated lipids are unenriched in the nAChR boundary. We propose the "density-threshold affinity" as a metric calculated from continuous density distributions, which reduces to a standard affinity in two-state binding.