Ankerosman1078

Z Iurium Wiki

The utilization of Microcystis biomass is an urgent issue in the mitigation of cyanobacterial bloom. In this study, Microcystis-derived biochar (MB) and Fe3O4-modified biochar (Fe3O4/MB) were fabricated for the U(VI) elimination. The results showed that U(VI) sorption process by either MB or Fe3O4/MB was pH-dependent and ionic strength-independent. The maximum sorption capacity of MB was higher than that of Fe3O4/MB. According to the analysis of X-ray photoelectron spectroscopy, U(VI) sorption on both MB and Fe3O4/MB was mainly ascribed to the surface complexation between U(VI) and oxygen-containing functional groups on the surface of MB. Fe3O4 particles on the surface of MB didn't provide extra active sites for the sorption of U(VI), but it enabled the adsorbent to be magnetically separated. Five consecutive sorption/desorption cycles verified the good reusability of Fe3O4/MB in this study. Therefore, the investigation is not only meaningful for the utilization of nuisance biomass from cyanobacterial blooms, but also provides novel adsorbents for the U(VI) removal from aqueous solutions.The anthropogenic release of trifluoroacetic acid (TFA) into the environmental media is not limited to photochemical oxidation of CFC alternatives and industrial emissions. Biological degradation of some fluorochemicals is expected to be a potential TFA source. For the first time, we assess if the potential precursors [62 fluorotelomer alcohol (62 FTOH), 42 fluorotelomer alcohol (42 FTOH), acrinathrin, trifluralin, and 2-(trifluoromethyl)acrylic acid (TFMAA)] can be biologically degraded to TFA. Results show that 62 FTOH was terminally transformed to 53 polyfluorinated acid (53 FTCA; 12.5 mol%), perfluorohexanoic acid (PFHxA; 2.0 mol%), perfluoropentanoic acid (PFPeA; 1.6 mol%), perfluorobutyric acid (PFBA; 1.7 mol%), and TFA (2.3 mol%) by day 32 in the landfill soil microbial culture system. 42 FTOH could remove multiple -CF2 groups by microorganisms and produce PFPeA (2.6 mol%), PFBA (17.4 mol%), TFA (7.8 mol%). We also quantified the degradation products of TFMAA as PFBA (1.3 mol%) and TFA (6.3 mol%). Furthermore, we basically analyzed the biodegradation contribution of short-chain FTOH as raw material residuals in commercial products to the TFA burden in the environmental media. We estimate global emission of 3.9-47.3 tonnes of TFA in the period from 1961 to 2019, and project 3.8-46.4 tonnes to be emitted from 2020 to 2040 via the pathway of 42 and 62 FTOH biodegradation (0.6-7.1 and 0.6-7.0 tonnes in China, respectively). Direct evidence of the experiments indicates that biodegradation of fluorochemicals is an overlooked source of TFA and there are still some unspecified mechanisms of TFA production pathways.Gut microbiota executes many beneficial functions. In this study, the relationship between gut microbiota and ovarian development in the swimming crab P. trituberculatus was explored for the first time. A total of 28 phyla and 422 genera were identified across all samples. However, 105 differential operational taxonomic units, and four differential phyla (Gemmatimonadetes, Actinobacteria, Firmicutes, Marinimicrobia_(SAR406_clade)) were identified. At the genus level, 42 differential genera were identified and 144 bacterial indicators were identified. A key finding was that the relative abundance of 139 indicator bacteria detected in the anisomycin-2 mg/kg group (AK group) was higher than that of blank group (BK group), control group (CK group), SP600125-15 mg/kg group (SK group). In addition, the relative abundance of three indicator bacteria (OTU_236, OTU_1395, OTU_552) detected in the SK group was higher than that of the BK, CK and AK groups. It was also found that the relative abundance of 20 differential genera (Methyloversatilis, Coprococcus_1, Erysipelotrichaceae_UCG_003, Rikenella, Corynebacterium, Ruminiclostridium, Fusicatenibacter, [Eubacterium]_ruminantium_group, Rikenellaceae_RC9_gut_group, Bifidobacterium, Lachnospiraceae_NK4A136_group, Ruminococcaceae_UCG_014, Christensenellaceae_R_7_group, uncultured_Bacteroidales_bacterium, Coprococcus_2, Desulfovibrio, Aggregatibacter, Ambiguous_taxa, Alloprevotella and Ruminococcaceae_NK4A214_group) in the SK, BK, CK, and AK group samples were increasing. These differential genera may reveal the relationship between gut microbial communities and ovarian development in P. trituberculatus after injection with the JNK pathway inhibitor SP600125 or the activator anisomycin. In summary, this study provides a new understanding into the relationship between gut microbiota and ovarian development in response to stimulation with inhibitor or activator.Chlorine disinfection inactivates pathogens in drinking water, but meanwhile it causes the formation of halogenated disinfection byproducts (DBPs), which may induce adverse health effects. Humans are unavoidably exposed to halogenated DBPs via tap water ingestion. Boiling of tap water has been found to significantly reduce the concentrations of halogenated DBPs. In this study, we found that compared with boiling only, adding ascorbate (vitamin C) or carbonate (baking soda) to tap water and then boiling the water further reduced the level of total organic halogen (a collective parameter for all halogenated DBPs) by up to 36% or 28%, respectively. Adding ascorbate removed the chlorine residual in tap water and thus prevented the formation of more halogenated DBPs in the boiling process. Adding carbonate elevated pH of tap water and consequently enhanced the hydrolysis (dehalogenation) of halogenated DBPs or led to the formation of more trihalomethanes that might volatilize to air during the boiling process. The comparative developmental toxicity of the DBP mixtures in the water samples was also evaluated. The results showed that adding a tiny amount of sodium ascorbate or carbonate (2.5-5.0 mg/L) to tap water followed by boiling for 5 min reduced the developmental toxicity of tap water to a substantially lower level than boiling only. The addition of sodium ascorbate or carbonate to tap water in household could be realized by preparing them in tiny pills. This study suggests simple and effective methods to reduce the adverse effects of halogenated DBPs on humans through tap water ingestion.Methamphetamine, mainly consumed as an illicit drug, is a potent addictive psychostimulant that has been detected in surface water at concentrations ranging from nanograms to micrograms per litre, especially in Middle and East Europe. The aim of this study was to expose brown trout (Salmo trutta fario) to environmental (1 μg L-1) and higher (50 μg L-1) concentrations of methamphetamine for 35 days with a four-day depuration phase to assess the possible negative effects on fish health. Degenerative liver and heart alterations, similar to those described in mammals, were observed at both concentrations, although at different intensities. Apoptotic changes in hepatocytes, revealed by activated caspase-3, were found in exposed fish. The parent compound and a metabolite (amphetamine) were detected in fish tissues in both concentration groups, in the order of kidney > liver > brain > muscle > plasma. Bioconcentration factors ranged from 0.13 to 80. A therapeutic plasma concentration was reached for both compounds in the high-concentration treatment. This study indicates that chronic environmental concentrations of methamphetamine can lead to health issues in aquatic organisms.Application of biochar (BC) derived from rice straw has generated increasing interest in long-term storage of soil organic carbon (SOC), however its carbon (C) sequestration potential vary widely among agricultural soils despite the same BC dose used. Ko143 mouse These discrepancies in the ability of soils to sequester C after BC application are poorly understood. Metabolic quotient (qCO2) is a reflection of "microbial efficiency" and linked to SOC turnover across ecosystems. Therefore, we investigated the SOC sequestration and qCO2 in a Yellow River alluvium paddy soil (YP) and a quaternary red clay paddy soil (QP) under rice-wheat annual rotation following 4-year of BC application rate of 11.3 Mg ha-1 per cropping season. BC application consistently brought 65.3 Mg C ha-1 into the soils over 4-year experimental period but increased SOC by 57.6 Mg C ha-1 in YP and 64.5 Mg C ha-1 in QP. Calculating SOC mass balance showed 11.7% of BC-C losses from YP and only 1.16% from QP. BC application stimulated the G+ bacterial, fungi, and actinomycetes by increasing O-alkyl C content in YP, while decreased the same microorganisms by decreasing anomeric C-H content in QP. Importantly, higher clay and amorphous Fe (Feo) contents in QP after BC application protected SOC from further decomposition, which in turn decreased microorganisms and resulted in higher SOC sequestration than YP. Our results indicated that soil properties controlled the extent of SOC sequestration after BC application and site-specific soil properties must be carefully considered to maximize long-term SOC sequestration after BC application.Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy170+cy 190)/(161ω7+181ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.Chromium is a controversial element, since it has been classified as essential trace element, to chemically and biologically inert compound, to potent intoxicator. Concerns have been risen for chromium effects on human and aquatic life because chromium has been accused for genotoxicity and carcinogenesis. Metals and their ions or complexes (and thus chromium substances) are included in the indicative list of main pollutants (Annex VIII of the Water Framework Directive (2000/60/EC)). Biological effects of chromium are strongly depended on chromium speciation. No universal CrIII or CrVI discharge limits to the aquatic environment have been suggested by the EU. International bodies within the EU, such as the Helsinki Commission and the Oslo-Paris Convention, have issued recommendations on chromium discharge levels. National CrVI and CrIII discharge limits vary in each EU Member State with respect to the receiving water body (marine water, lake, river, sewer system). The maximum discharge limit to the aquatic environment in EU is 1 and 5 mg L-1 for CrVI and Crtotal, respectively.

Autoři článku: Ankerosman1078 (Hastings Johnsen)