Ankermartens0983

Z Iurium Wiki

6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.Adhesive hydrogels have broad applications ranging from tissue engineering to bioelectronics; however, fabricating adhesive hydrogels with multiple functions remains a challenge. In this study, a mussel-inspired tannic acid chelated-Ag (TA-Ag) nanozyme with peroxidase (POD)-like activity was designed by the in situ reduction of ultrasmall Ag nanoparticles (NPs) with TA. The ultrasmall TA-Ag nanozyme exhibited high catalytic activity to induce hydrogel self-setting without external aid. The nanozyme retained abundant phenolic hydroxyl groups and maintained the dynamic redox balance of phenol-quinone, providing the hydrogels with long-term and repeatable adhesiveness, similar to the adhesion of mussels. The phenolic hydroxyl groups also afforded uniform distribution of the nanozyme in the hydrogel network, thereby improving its mechanical properties and conductivity. PF 429242 cost Furthermore, the nanozyme endowed the hydrogel with antibacterial activity through synergistic effects of the reactive oxygen species generated via POD-like catalytic reactions and the intrinsic bactericidal activity of Ag. Owing to these advantages, the ultrasmall TA-Ag nanozyme-catalyzed hydrogel could be effectively used as an adhesive, antibacterial, and implantable bioelectrode to detect bio-signals, and as a wound dressing to accelerate tissue regeneration while preventing infection. Therefore, this study provides a promising approach for the fabrication of adhesive hydrogel bioelectronics with multiple functions via mussel-inspired nanozyme catalysis.Resin infiltrants have been effectively applied in dentistry to manage non-cavitated carious lesions in proximal dental surfaces. However, the common formulations are composed of inert methacrylate monomers. In this study, we developed a novel resin infiltrant with microcapsules loaded with an ionic liquid (MC-IL), and analyzed the physical properties and cytotoxicity of the dental resin. First, the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) was synthesized. BMI.NTf2 has previously shown antibacterial activity in a dental resin. Then, MC-IL were synthesized by the deposition of a preformed polymer. The MC-IL were analyzed for particle size and de-agglomeration effect via laser diffraction analysis and shape via scanning electron microscopy (SEM). The infiltrants were formulated, and the MC-IL were incorporated at 2.5%, 5%, and 10 wt%. A group without MC-IL was used as a control. The infiltrants were evaluated for ultimate tensile strength (UTS), contact angle, surface free energy (SFE), and cytotoxicity. The MC-IL showed a mean particle size of 1.64 (±0.08) μm, shriveled aspect, and a de-agglomeration profile suggestive of nanoparticles' presence in the synthesized powder. There were no differences in UTS among groups (p > 0.05). The incorporation of 10 wt% of MC-IL increased the contact angle (p 0.05). The incorporation of microcapsules as a drug-delivery system for ionic liquids may be a promising strategy to improve dental restorative materials.Insufficient early osteogenesis seriously affects the later stage osteogenic quality and osseointegration of dental implants. To promote early osteogenesis, we first designed a Ti dental implant with a built-in magnet (mTi) to produce a local static magnetic field (SMF). Then, a dental implantation system comprising the mTi implant and the superparamagnetic hydroxyapatite (HAYb/Ho-Fe, named HYH-Fe) particles was implanted into the alveolar bone of beagles. The results showed that the mTi + HYH-Fe group displayed better early osteogenesis and later stage osseointegration than the Ti + HA and mTi + HA groups. A combination of the local SMF (mTi) and superparamagnetic HYH-Fe particles had a positive effect on the pro-osteogenesis of Ti implants. The results also indicated that week 10 could be adopted as the key time point to evaluate the early osteogenic effect of the mTi + HYH-Fe implantation system, which would be a promising prospect for promotion of osteogenesis, in vivo tracking investigation of material-bone relationships, and clinical applications.Most commonly used wound dressings have severe problems, such as an inability to adapt to wound shape or a lack of antibacterial capacity, affecting their ability to meet the requirements of clinical applications. Here, a nanocomposite hydrogel (XKP) is developed by introducing polydopamine nanoparticles (PDA NPs) into a food gum matrix (XK, consisting of xanthan gum and konjac glucomannan, both FDA-approved food thickening agents) for skin wound healing. In this system, the embedded PDA NPs not only interact with the food gum matrix to form a hydrogel with excellent mechanical strength, but also act as photothermal transduction agents to convert near-infrared laser radiation to heat, thereby triggering bacterial death. Moreover, the XKP hydrogel has high elasticity and tunable water content, enabling it to adapt to the shape of the wound and insulate it, providing a moist environment suitable for healing. In-vivo skin wound healing results clearly demonstrate that XKP can significantly accelerate the healing of wounds by reducing the inflammatory response and promoting vascular reconstruction. In summary, this strategy provides a simple and practical method to overcome the drawbacks of traditional wound dressings, and provides further options when choosing suitable wound healing materials for clinical applications.Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs ( less then 6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths.

Autoři článku: Ankermartens0983 (Daugaard Hartvig)