Ankerfink5282

Z Iurium Wiki

BACKGROUND AND OBJECTIVE Although acetaminophen is frequently used during pregnancy, little is known about fetal acetaminophen pharmacokinetics. Acetaminophen safety evaluation has typically focused on hepatotoxicity, while other events (fetal ductal closure/constriction) are also relevant. iFSP1 mw We aimed to develop a fetal-maternal physiologically based pharmacokinetic (PBPK) model (f-m PBPK) to quantitatively predict placental acetaminophen transfer, characterize fetal acetaminophen exposure, and quantify the contributions of specific clearance pathways in the term fetus. METHODS An acetaminophen pregnancy PBPK model was extended with a compartment representing the fetal liver, which included maturation of relevant enzymes. Different approaches to describe placental transfer were evaluated (ex vivo cotyledon perfusion experiments, placental transfer prediction based on Caco-2 cell permeability or physicochemical properties [MoBi®]). Predicted maternal and fetal acetaminophen profiles were compared with in vivo observations. RESULTS Tested approaches to predict placental transfer showed comparable performance, although the ex vivo approach showed highest prediction accuracy. Acetaminophen exposure in maternal venous blood was similar to fetal venous umbilical cord blood. Prediction of fetal acetaminophen clearance indicated that the median molar dose fraction converted to acetaminophen-sulphate and N-acetyl-p-benzoquinone imine was 0.8% and 0.06%, respectively. The predicted mean acetaminophen concentration in the arterial umbilical cord blood was 3.6 mg/L. CONCLUSION The median dose fraction of acetaminophen converted to its metabolites in the term fetus was predicted. The various placental transfer approaches supported the development of a generic f-m PBPK model incorporating in vivo placental drug transfer. The predicted arterial umbilical cord acetaminophen concentration was far below the suggested postnatal threshold (24.47 mg/L) for ductal closure.The chapter "Utilizing the Public GenomeTrakr Database for Foodborne Pathogen Traceback" is changed to open access, per the author's request in this revised version of the book.OBJECTIVE This systematic literature review (SLR) had two objectives to analyse published economic evaluations of biological disease-modifying anti-rheumatic drugs (bDMARDs) for patients with moderate to severe rheumatoid arthritis (RA) previously treated with DMARDs and to assess the quality of those that included sequences of treatments. METHODS We performed an SLR on PubMed, Central, Cochrane, and French databases from January 2000 to December 2018. The search focused on cost-effectiveness/utility/benefit analyses. We extracted data on treatment sequences, outcomes (e.g. quality-adjusted life year) and choices of economic evaluation methods (e.g. model type, type of analysis, and method of utility estimation). We analysed the improvement of methods by comparing two sub-periods (2000-2009 and 2010-2018). The quality of reporting and the quality of the methods were assessed using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) and a set of eight key aspects for a reference case for ession must be made available.Along with cognitive decline, 90% of patients with dementia experience behavioral and psychological symptoms of dementia, such as psychosis, aggression, agitation, and depression. Atypical antipsychotics are commonly prescribed off-label to manage certain symptoms, despite warnings from the regulatory agencies regarding the increased risk of mortality associated with their use in elderly patients. Moreover, these compounds display a limited clinical efficacy, mostly owing to the fact that they were developed to treat schizophrenia, a disease characterized by neurobiological deficits. Thus, to improve clinical efficacy, it has been suggested that patients with dementia should be treated with exclusively designed and developed drugs that interact with pharmacologically relevant targets. Within this context, numerous studies have suggested druggable targets that might achieve therapeutically acceptable pharmacological profiles. Based on this, several different drug candidates have been proposed that are being investigated in clinical trials for behavioral and psychological symptoms of dementia. We highlight the recent advances toward the development of therapeutic agents for dementia-related psychosis and agitation/aggression and discuss the relationship between the relevant biological targets and their etiology. In addition, we review the compounds that are in the early stage of development (discovery or preclinical phase) and those that are currently being investigated in clinical trials for dementia-related psychosis and agitation/aggression. We also discuss the mechanism of action of these compounds and their pharmacological utility in patients with dementia.Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.

Autoři článku: Ankerfink5282 (Joyce Stokes)