Alvaradozhao0512
In recent years, several studies have investigated the flux of particulate plastic through municipal waste water treatment plants (WWTP). Challenges related to time consuming analytical methods have limited the number of sampling points and detection limits have hampered quantification of nanoplastic and microplastic fiber fluxes through WWTPs. By synthesizing nanoplastic particles and microplastic fibers labeled with a rare metal (Pd and In, respectively) which can be measured as a proxy for the plastic itself, we have circumvented major analytical pitfalls associated with (micro)plastic measurements. In this study, we spiked the labeled materials to a pilot WWTP mimicking the activated sludge process (nitrification, de-nitrification and secondary clarification). Using a mass flow model for WWTP sludge, we assessed the behavior of particulate plastic in relation to the removal of organic matter. Triplicate samples were collected from the mixed liquor and from the effluent at least twice weekly over the entire experimental run time of 40 d. Our findings show that in discrete grab samples during steady state conditions, at least 98% of particulate plastics were associated with the biosolids. A positive correlation between total suspended solids (TSS) and plastic concentrations was observed in the sludge as well as in the effluent. Because of the strong association between particulate plastic and TSS, TSS removal is likely a good indicator of plastic removal in a full scale WWTP. Therefore, additional process steps in a full-scale WWTP which further reduce the TSS load will likely retain nanoplastic particles and microplastic fibers effectively and consequently increase the removal rates.We present RawVegetable, a software for mass spectrometry data assessment and quality control tailored toward shotgun proteomics and cross-linking experiments. RawVegetable provides four main modules with distinct features (A) The charge state chromatogram that independently displays the ion current for each charge state; useful for optimizing the chromatography for highly charged ions and with lower XIC values such as those typically found in cross-linking experiments. (B) The XL-Artefact determination, which flags possible noncovalently associated peptides. (C) The TopN density estimation, for detecting retention time intervals of under or over-sampling, and (D) The chromatography reproducibility module, which provides pairwise comparisons between multiple experiments. RawVegetable, a tutorial, and the example data are freely available for academic use at http//patternlabforproteomics.org/rawvegetable. SIGNIFICANCE Chromatography optimization is a critical step for any shotgun proteomic or cross-linking mass spectrometry experiment. Here, we present a nifty solution with several key features, such as displaying individual charge state chromatograms, highlighting chromatographic regions of under- or over-sampling and checking for reproducibility.Proteomic characterization of Micrurus browni browni venom showed approximately 41 components belonging to 9 protein families, mainly phospholipases A2 (PLA2s) and three-finger toxins (3FTxs). Venom gland transcriptome yielded 39 venom transcripts belonging to 10 protein families. Functional characterization identified a multimeric toxin, here designated Brownitoxin-1, which comprises at least one PLA2 and one 3FTx. Its components have no or very low lethality individually but become extremely lethal when combined; both were partially characterized. Other two lethal components were identified A neurotoxic PLA2, and a postsynaptic α-neurotoxin. LD50s as well as PLA2 and nAChR-blocking activities were determined for whole venom and isolated components. Application of venom to murine neuromuscular preparations caused a progressive decrease of twitch force that was irreversible after washing. Inhibition of PLA2 activity with p-bromophenacyl bromide (pBPB) showed that approximately 90% of toxicity is dependent on ins. Finally, we report the absence of taxon specificity, which has been previously reported in the venoms of other snakes of the same genus.Circular RNAs (circRNAs) regulate gene expression in different malignancies. However, the molecular mechanisms that link circRNAs with the tumorigenesis of prostate cancer (PCa) are not well understood. In the present study, we attempted to provide a novel basis for targeted therapy for PCa from the aspect of circRNA-microRNA (miRNA)-mRNA interaction. We investigated the expression of circRNAs in 5 paired PCa tissues and adjacent non-tumor tissues by microarray analysis. mTOR inhibitor cancer We focused on hsa_circ_0005100, which is located on chromosome 1 and derived from FMN2, and thus we named it circFMN2. The qRT-PCR was used to detect circFMN2 and target miRNA expression in PCa tissues and cell lines. Biological functional experiments were performed to detect the effects of circFMN2 on the biological behavior of PCa cells in vivo and in vitro. Bioinformatic analysis was utilized to predict potential miRNA target sites on circFMN2. High expression of circFMN2 was associated with PCa progression. Function assays revealed that knockdown of circFMN2 significantly reduced PCa cell growth in vitro and in vivo. Finally, we found that circFMN2 acts as a competing endogenous RNA (ceRNA) for miR-1238 to regulate LIM-homeobox gene 2 (LHX2) expression. circFMN2 regulates the miR-1238/LHX2 axis to promote PCa progression.Accumulating evidence suggested that circular RNAs (circRNAs) play critical roles in the initiation and progression of malignant cancers. However, the roles of circRNAs in gastric cancer (GC) remain largely unknown. In the present study, we investigated the expression of circRNAs in 5 GC tissues with metastasis and 5 GC tissues without metastasis by microarray analysis. We focused on hsa_circ_0003506, which was spliced from CYFIP2 gene located at chr5156786012-156788606 and finally formed a sense-overlapping circular transcript of 366 nt, and thus we named it circCYFIP2. circCYFIP2 was found to be significantly upregulated in GC tissues and cell lines. High expression of circCYFIP2 was associated with metastasis and poor prognosis of GC patients. Function assays revealed that overexpression or knockdown of circCYFIP2 significantly enhanced or reduced GC cell proliferation and invasion abilities. In mechanism, we found that circCYFIP2 might serve as a competing endogenous RNA (ceRNA) of microRNA-1205 (miR-1205) in GC progression.