Alstongunn1544

Z Iurium Wiki

Invasion depth is an important index for staging and clinical treatment strategy of bladder cancer (BCa). The aim of this study was to investigate the feasibility of segmenting the BCa region from bladder wall region on MRI, and quantitatively measuring the invasion depth of the tumor mass in bladder lumen for further clinical decision-making. This retrospective study involved 20 eligible patients with postoperatively pathologically confirmed BCa. It was conducted in the following steps (1) a total of 1159 features were extracted from each voxel of both the certain cancerous and wall tissues with the T2-weighted (T2W) MRI data; (2) the support vector machine (SVM)-based recursive feature elimination (RFE) method was implemented to first select an optimal feature subset, and then develop the classification model for the precise separation of the cancerous regions; (3) after excluding the cancerous region from the bladder wall, the three-dimensional bladder wall thickness (BWT) was calculated using Laplacian method, and the invasion depth of BCa was eventually defined by the subtraction of the mean BWT excluding the cancerous region and the minimum BWT of the cancerous region.

The segmented results showed a promising accuracy, with the mean Dice similarity coefficient of 0.921. The "soft boundary" defined by the voxels with the probabilities between 0.1 and 0.9 could demonstrate the overlapped region of cancerous and wall tissues. The invasion depth calculated from proposed segmentation method was compared with that from manual segmentation, with a mean difference of 0.277mm.

The proposed strategy could accurately segment the BCa region, and, as the first attempt, realize the quantitative measurement of BCa invasion depth.

The proposed strategy could accurately segment the BCa region, and, as the first attempt, realize the quantitative measurement of BCa invasion depth.

Exposure to heat, air pollution, and pollen are associated with health outcomes, including cardiovascular and respiratory disease. Studies assessing the health impacts of climate change have considered increased exposure to these risk factors separately, though they may be increasing simultaneously for some populations and may act synergistically on health. Our objective is to systematically review epidemiological evidence for interactive effects of multiple exposures to heat, air pollution, and pollen on human health.

We systematically searched electronic literature databases (last search, April 29, 2019) for studies reporting quantitative measurements of associations between at least two of the exposures and mortality from any cause and cardiovascular and respiratory morbidity and mortality specifically. Following the Navigation Guide systematic review methodology, we evaluated the risk of bias of individual studies and the overall quality and strength of evidence.

We found 56 studies that met the incynergistic effects between heat and air pollution are confirmed with additional research, the health impacts from climate change-driven increases in air pollution and heat exposure may be larger than previously estimated in studies that consider these risk factors individually.

Supraspinatus (SSP) tendon ruptures requiring surgical repair are common. Arthroscopic suture anchor fixation has gradually replaced transosseous repair in supraspinatus tendon tear. Our objective was to compare mechanical properties between transosseous and anchor supraspinatus repair in the first 6 postoperative weeks in a rabbit model.

One hundred and fifty-two rabbits had one supraspinatus tendon repaired either with an anchor suture 1 week after detachment or with transosseous sutures. Rabbits were euthanized at 0, 1, 2, 4 or 6 postoperative weeks. Experimental and contralateral tendons (304 tendons) were mechanically tested to failure. Data are expressed as percent of contralateral.

Anchor repair had higher loads to failure compared to transosseous repair, at immediate repair (week 0, 52 ± 21% vs 25 ± 17%, respectively; p = 0.004) and at 1 postoperative week (64 ± 32% vs 28 ± 10%; p = 0.003) with no difference after 2 weeks. There was no difference in stiffness. Transosseous repairs showed higher rates of midsubstance failures compared to anchor repairs at 1 (p = 0.004) and 2 postoperative weeks (p < 0.001). Both transosseous and anchor repairs restored supraspinatus mechanical properties after 4 postoperative weeks.

Anchor repair provided better initial tensile strength while transosseous repair led to a faster normalization (namely, midsubstance) of the mode of failure. Research to optimize supraspinatus repair may need to consider the advantages from both surgical approaches.

Anchor repair provided better initial tensile strength while transosseous repair led to a faster normalization (namely, midsubstance) of the mode of failure. Research to optimize supraspinatus repair may need to consider the advantages from both surgical approaches.Inflammation and oxidative stress are two major factors that are involved in the pathogenesis of atherosclerosis. A smart drug delivery system that responds to the oxidative microenvironment of atherosclerotic plaques was constructed in the present study. Simvastatin (SIM)-loaded biodegradable polymeric micelles were constructed from hyaluronic acid (HA)-coated poly(ethylene glycol)-poly(tyrosine-ethyl oxalyl) (PEG-Ptyr-EO) for the purpose of simultaneously inhibiting macrophages and decreasing the level of reactive oxygen species (ROS) to treat atherosclerosis. HA coating endows the micelle system the ability of targeting CD44-positive inflammatory macrophages. this website Owing to the ROS-responsive nature of PEG-Ptyr-EO, the micelles can not only be degraded by enzymes, but also consumes ROS by itself at the pathologic sites, upon which the accumulation of pro-inflammatory macrophages is effectively suppressed and oxidative stress is alleviated. Consequently, the cellular uptake experiment demonstrated that SIM-loaded HA-coated micelles can be effectively internalized by LPS-induced RAW264.7 cells and showed high cytotoxicity against the cells, but low cytotoxicity against LO2 cells. In mouse models of atherosclerosis, intravenously SIM-loaded HA-coated micelles can effectively reduce plaque content of cholesterol, resulting in remarkable therapeutic effects. In conclusion, the SIM-loaded micelle system provides a promising and innovative option against atherosclerosis.

Autoři článku: Alstongunn1544 (Klit Thorpe)