Alithompson3158

Z Iurium Wiki

Estuarine and intertidal wetlands are important sites for nitrogen transformation and elimination. However, the factors controlling nitrogen removal processes remain largely uncertain in the highly dynamic environments. In this study, continuous-flow experiment combined with 15N isotope pairing technique was used to investigate in situ rates of denitrification and anaerobic ammonium oxidation (anammox) and their coupling with nitrification in intertidal wetlands of the Yangtze Estuary. The measured rates varied from below the detection limit to 152.39 µmol N/(m2·hr) for denitrification and from below the detection limit to 43.06 µmol N/(m2·hr) for anammox. The coupling links of nitrogen removal processes with nitrification were mainly dependent on nitrate, organic carbon, sulfide, dissolved oxygen and ferric iron in the estuarine and intertidal wetlands. Additionally, it was estimated that the actual nitrogen removal processes annually removed approximately 5% of the terrigenous inorganic nitrogen discharged into the Yangtze Estuary. This study gives new insights into nitrogen transformation and fate in the estuarine and intertidal wetlands.China's energy dependents on coal due to the abundance and low cost of coal. Coal provides a secure and stable energy source in China. Over-dependence on coal results in the emission of Hazardous Trace Elements (HTEs) including selenium (Se), mercury (Hg), lead (Pb), arsenic (As), etc., from Coal-Fired Power Plants (CFPPs), which are the major toxic air pollutants causing widespread concern. For this reason, it is essential to provide a succinct analysis of the main HTEs emission control techniques while concurrently identifying the research prospects framework and specifying future research directions. The study herein reviews various techniques applied in China for the selected HTEs emission control, including the technical, institutional, policy, and regulatory aspects. The specific areas covered in this study include health effects, future coal production and consumption, the current situation of HTEs in Chinese coal, the chemistry of selected HTEs, control techniques, policies, and action plans safeguarding the emission control. The review emphasizes the fact that China must establish and promote efficient and clean ways to utilize coal in order to realize sustainable development. The principal conclusion is that cleaning coal technologies and fuel substitution should be great potential HTEs control technologies in China. Future research should focus on the simultaneous removal of HTEs, PM, SOx, and NOx in the complex flue gas.Imazethapyr (IM) is a widely used acetolactate synthase-inhibiting chiral herbicide. It has long-term residuals that may be absorbed by the human body through the edible parts of plants, such as vegetable leaves or fruits. Here, we selected a model plant, Arabidopsis thaliana, to determine the effects of R-IM and S-IM on its leaf structure, photosynthetic efficiency, and metabolites, as well as the structures of microorganisms in the phyllosphere, after 7 days of exposure. Our results indicated enantiomeric differences in plant growth between R-IM and S-IM; 133 µg/kg R-IM showed heavier inhibition of photosynthetic efficiency and greater changes to subcellular structure than S-IM. R-IM and S-IM also had different effects on metabolism and leaf microorganisms. S-IM mainly increased lipid compounds and decreased amino acids, while R-IM increased sugar accumulation. The relative abundance of Moraxellaceae human pathogenic bacteria was increased by R-IM treatment, indicating that R-IM treatment may increase leaf surface pathogenic bacteria. Our research provides a new perspective for evaluating the harmfulness of pesticide residues in soil, phyllosphere microbiome changes via the regulation of plant metabolism, and induced pathogenic bacterial accumulation risks.Nanophotocatalysts have shown great potential for degrading poly- and perfluorinated substances (PFAS). In light of the fact that most of these catalysts were studied in pure water, this study was designed to elucidate effects from common environmental factors on decomposing and defluorinating perfluorooctanoic acid (PFOA) by In2O3 nanoparticles. Results from this work demonstrated that among the seven parameters, pH, sulfate, chloride, H2O2, In2O3 dose, NOM and O2, the first four had statistically significant negative effects on PFOA degradation. Since PFOA is a strong acid, the best condition leading to the highest PFOA removal was identified for two pH ranges. When pH was between 4 and 8, the optimal condition was pH = 4.2; sulfate = 5.00 mg/L; chloride = 20.43 mg/L; H2O2 = 0 mmol/L. Under this condition, PFOA decomposition and defluorination were 55.22 and 23.56%, respectively. When pH was between 2 and 6, the optimal condition was pH = 2; sulfate = 5.00 mg/L; chloride = 27.31 mg/L; H2O2 = 0 mmol/L. With this condition, the modeled PFOA decomposition was 97.59% with a defluorination of approximately 100%. These predicted results were all confirmed by experimental data. Thus, In2O3 nanoparticles can be used for degrading PFOA in aqueous solutions. This approach works best when the target contaminated water contains low concentrations of NOM, sulfate and chloride and at a low pH.Bauxite residues, a large volume solid waste, are in urgent need of effective disposal and management. Especially, strategies to alleviate the high alkalinity of bauxite residue remain a big challenge. selleck kinase inhibitor Here, we developed a synergistic pyrolysis to neutralize the alkalinity of bauxite residue and upgrade the structure of biomass simultaneously. By cooperating the catalytic feature from bauxite residue, rice straw, a cellulose-enriched biomass, could prefer to produce acidic components under a hypothermal pyrolysis temperature (below 250 °C) and partial oxygen-contained atmosphere as evidenced by the synchronous TGA-FTIR analysis. In return, these in-situ produced acidic components neutralized the bauxite residue profoundly (pH decreased from 11.5 to 7.2) to obtain a neutral product with long-term water leaching stability. Also, a higher pyrolysis temperature led to neutral biochar-based products with well-defined carbonization characteristics. Thus, the biomass-driven pyrolysis strategy provides a potential to dispose the alkalinity issue of bauxite residue and further opportunities for the sustainable reuse and continuing management of bauxite residue.

Autoři článku: Alithompson3158 (Lutz Christophersen)