Alexanderroche4104

Z Iurium Wiki

The combined contamination of brominated flame retardants (BFRs) and heavy metals in electronic waste (e-waste) recycling and disposal areas has been a serious concern owing to their environmental persistence and chronic toxicities. Ammonia oxidizers, e.g., ammonia-oxidizing archaea (AOA) and bacteria (AOB) play essential roles in nitrogen cycling and can serve as ideal indicators that reflect the changes in sediment health in response to environmental variables. There is currently very little information available on the combined toxic effects of BFRs and heavy metals on AOA and AOB communities. In this study, two typical e-waste pollutants, tetrabromobisphenol A (TBBPA) and copper (Cu), were selected as target contaminants to investigate the individual and combined effects of both pollutants on AOA and AOB communities in river sediments. Respective treatments of TBBPA (1, 10, and 20 mg/kg wet weight), Cu (100 mg/kg wet weight) and their combined treatments (weight ratios of 1100, 110, and 15) were performed in laboratory experiments. High-throughput sequencing was applied to explore the response of ammonia oxidizers to TBBPA and Cu. The interaction types of TBBPA and Cu were calculated by the directional classification system to reveal the individual and combined toxicities of both contaminants to the ammonia oxidizers. On days 15 and 30, the dominant interaction type of TBBPA and Cu was synergistic (62.50%), and the combined contamination exacted selective pressure and inhibition on the AOB and AOA communities. On days 45 and 90, the interaction type shifted to be antagonistic (83.33%), with both the AOB and AOA communities gradually reaching stable population equilibria. EZH1 inhibitor The alteration of the interaction type is attributed to the elevated TBBPA/Cu tolerance as the incubation time increased. This study disclosed the interaction types of TBBPA and Cu in contaminated river sediments, and revealed that the combined effect could potentially manipulate AOB and AOA communities. Chemically oxidative removal of polycyclic aromatic hydrocarbons (PAHs) in soil is related to their occurrence state. Whether the heterogeneity of natural organic matter has an effect on the occurrence of PAHs in soil and, if there is an effect, on the oxidative removal efficiency of PAHs remains unknown. In this study, the removal efficiencies of 16 priority PAHs aged in humic acids (HAs) of different soil aggregate fractions by various oxidants were investigated by combining soil fractionation and microreaction experiments. Results showed that the accumulations of PAHs in particulate HA (P-HA) and microaggregate occluded HA (MO-HA) mainly occurred in the early period of the aging time frame. In contrast, PAH accumulation in non-aggregated silt and clay associated HA (NASCA-HA) was relatively slow and tended to saturate in the late period of the aging time frame. The cumulative contents of PAHs throughout the entire aging period in MO-HA and NASCA-HA were significantly greater than that in P-HA. The aged PAHs in P-HA and NASCA-HA exhibited the highest and lowest removal efficiencies, respectively. This ranking was mainly governed by the molecular size and polarity of HAs. Sodium persulfate and potassium permanganate had the highest removal efficiencies in total PAHs in HAs, with average efficiencies of 85.8% and 79.1%, respectively, in P-HA. Hydrogen peroxide had the lowest degradation efficiency in PAHs. In particular, the degradation efficiency of total PAHs in NASCA-HA was lowered to 31.0%. PAH congeners in HAs showed a large difference in oxidative removal efficiency. Low-ring PAH was more easily degraded than medium- and high-ring PAHs, and in most treatments, fluoranthene and pyrene in the medium ring and benzo[a]pyrene in the high ring demonstrated higher efficiencies than other PAHs with the same number of rings. Our findings are useful in promoting the accurate and green remediation of PAH-contaminated soils. The strict environmental management has been implemented in Taihu Basin to reduce the surface water contamination; however, the effectiveness of the management actions has not been comprehensively evaluated. In the present study, 364 samples were collected during four campaigns over a span of one year from surface water, municipal wastewater treatment plants (MWWTPs), industrial wastewater treatment plants (IWWTPs), industrial enterprises, and aquaculture in a typical region in the Upper Taihu Basin. Overall concentration, temporal variation and spatial distribution of 16 PAHs in surface water and various pollution sources were evaluated and the potential pollution sources were identified. Results showed that concentrations of individual PAHs in the surface water ranged from less than the limit of quantification (LOQ) to 949 ng L-1, indicating a reduction of PAH contamination level after the implementation of environmental management actions. Influent of MWWTPs and wastewater from industrial enterprises exhibited relatively high ∑PAHs concentrations (mean 880 ng L-1 and 642 ng L-1, respectively); these samples also exhibited a similar seasonal variation as well as composition of PAH congeners to those found in surface water, and therefore were designated as the main emission sources of PAHs in the studied region. Additional source apportionment using principal component analysis was also conducted to verify the proposed sources and diagnose other pollution sources. The findings provided a thorough understanding of PAH pollution, especially its major emission sources, in a typical region with pollution-intensive industries after the implementation of strict environmental management. Contamination by potentially toxic elements (PTEs) in children's toys and jewelry is an ongoing problem where PTEs can become bioavailable especially via oral pathway (ingestion as a whole or of parts, and mouthing) and may cause adverse health effects for children. In the present review, legislation updates from the last decade in the United States (U.S.), Canada, and the European Union (E.U.) on PTEs in toys and jewelry are presented. Then, a literature review mostly covering the last decade on the total concentration, bioavailability, children's exposure, and bioaccessibility of PTEs in toys and jewelry is provided. The U.S. and Canadian legislations mainly focus on lead (Pb) and cadmium (Cd) total/soluble concentration limits to prevent exposure and have received several updates within the last decade, extending particularly the covered span of children's products. It seems that the introduction, subsequent enforcement, and update of regulations in developed countries have shifted the problem towards developing countries.

Autoři článku: Alexanderroche4104 (Mueller Mejer)