Albrightcallesen4586

Z Iurium Wiki

The use of the macroscopic inclusion limits the direct application of this method in a biomedical context, but it provides a robust estimation of the elastic modulus that can be used for material characterization in industrial applications.Biophysical models are a promising means for interpreting diffusion weighted magnetic resonance imaging (DW-MRI) data, as they can provide estimates of physiologically relevant parameters of microstructure including cell size, volume fraction, or dispersion. However, their application in cardiac microstructure mapping (CMM) has been limited. This study proposes seven new two-compartment models with combination of restricted cylinder models and a diffusion tensor to represent intra-and extracellular spaces, respectively. Three extended versions of the cylinder model are studied here cylinder with elliptical cross section (ECS), cylinder with Gamma distributed radii (GDR), and cylinder with Bingham distributed axes (BDA). The proposed models were applied to data in two fixed mouse hearts, acquired with multiple diffusion times, q-shells and diffusion encoding directions. The cylinderGDR-pancake model provided the best performance in terms of root mean squared error (RMSE) reducing it by 25% compared to diffusion tensor imaging (DTI). The cylinderBDA-pancake model represented anatomical findings closest as it also allows for modelling dispersion. High-resolution 3D synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical models. A novel tensor-based registration method is proposed to align SRI structure tensors to the MR diffusion tensors. The consistency between SRI and DW-MRI parameters demonstrates the potential of compartment models in assessing physiologically relevant parameters.We show dense voxel embeddings learned via deep metric learning can be employed to produce a highly accurate segmentation of neurons from 3D electron microscopy images. A "metric graph" on a set of edges between voxels is constructed from the dense voxel embeddings generated by a convolutional network. Partitioning the metric graph with long-range edges as repulsive constraints yields an initial segmentation with high precision, with substantial accuracy gain for very thin objects. The convolutional embedding net is reused without any modification to agglomerate the systematic splits caused by complex "self-contact" motifs. Our proposed method achieves state-of-the-art accuracy on the challenging problem of 3D neuron reconstruction from the brain images acquired by serial section electron microscopy. Our alternative, object-centered representation could be more generally useful for other computational tasks in automated neural circuit reconstruction.X-ray computed tomography (CT) is of great clinical significance in medical practice because it can provide anatomical information about the human body without invasion, while its radiation risk has continued to attract public concerns. Reducing the radiation dose may induce noise and artifacts to the reconstructed images, which will interfere with the judgments of radiologists. Previous studies have confirmed that deep learning (DL) is promising for improving low-dose CT imaging. However, almost all the DL-based methods suffer from subtle structure degeneration and blurring effect after aggressive denoising, which has become the general challenging issue. This paper develops the Comprehensive Learning Enabled Adversarial Reconstruction (CLEAR) method to tackle the above problems. click here CLEAR achieves subtle structure enhanced low-dose CT imaging through a progressive improvement strategy. First, the generator established on the comprehensive domain can extract more features than the one built on degraded CT images and directly map raw projections to high-quality CT images, which is significantly different from the routine GAN practice. Second, a multi-level loss is assigned to the generator to push all the network components to be updated towards high-quality reconstruction, preserving the consistency between generated images and gold-standard images. Finally, following the WGAN-GP modality, CLEAR can migrate the real statistical properties to the generated images to alleviate over-smoothing. Qualitative and quantitative analyses have demonstrated the competitive performance of CLEAR in terms of noise suppression, structural fidelity and visual perception improvement.EEG inverse problem is underdetermined, which poses a long standing challenge in Neuroimaging. The combination of source-imaging and analysis of cortical directional networks enables us to noninvasively explore the underlying neural processes. However, existing EEG source imaging approaches mainly focus on performing the direct inverse operation for source estimation, which will be inevitably influenced by noise and the strategy used to find the inverse solution. Here, we develop a new source imaging technique, Deep Brain Neural Network (DeepBraiNNet), for robust sparse spatiotemporal EEG source estimation. In DeepBraiNNet, considering that Recurrent Neural Network (RNN) are usually "deep" in temporal dimension and thus suitable for time sequence modelling, the RNN with Long Short-Term Memory (LSTM) is utilized to approximate the inverse operation for the lead field matrix instead of performing the direct inverse operation, which avoids the possible effect of the direct inverse operation on the underdetermined lead field matrix prone to be influenced by noise. Simulations on various source patterns and noise conditions confirmed that the proposed approach could actually recover the spatiotemporal sources well, outperforming existing state of-the-art methods. DeepBraiNNet also estimated sparse MI related activation patterns when it was applied to a real Motor Imagery dataset, consistent with other findings based on EEG and fMRI. Based on the spatiotemporal sources estimated from DeepBraiNNet, we constructed MI related cortical neural networks, which clearly exhibited strong contralateral network patterns for the two MI tasks. Consequently, DeepBraiNNet may provide an alternative way different from the conventional approaches for spatiotemporal EEG source imaging.

Autoři článku: Albrightcallesen4586 (Carrillo Waller)