Albrechtsenmorton9472

Z Iurium Wiki

This application enables (with a continuously updated database) the identification of the causes in question. Thus, the developed solution enables the objective registration of machine downtime and, for most cases, the identification of causes. The acquired knowledge, so far largely undisclosed, has created opportunities to improve the utilization level of machinery exploited in the mining production process. The paper discusses the methodology, together with the IT system, for identifying the causes of machine downtime and presents an example of its application for a shearer loader, which is the basic machine of a mechanized longwall system. The results indicate great potential for the application of the developed system to improve the efficiency of machinery utilization and the whole process of mining production.Natural disasters cause enormous damage and losses every year, both economic and in terms of human lives. It is essential to develop systems to predict disasters and to generate and disseminate timely warnings. Recently, technologies such as the Internet of Things solutions have been integrated into alert systems to provide an effective method to gather environmental data and produce alerts. This work reviews the literature regarding Internet of Things solutions in the field of Early Warning for different natural disasters floods, earthquakes, tsunamis, and landslides. The aim of the paper is to describe the adopted IoT architectures, define the constraints and the requirements of an Early Warning system, and systematically determine which are the most used solutions in the four use cases examined. This review also highlights the main gaps in literature and provides suggestions to satisfy the requirements for each use case based on the articles and solutions reviewed, particularly stressing the advantages of integrating a Fog/Edge layer in the developed IoT architectures.Magnetic Resonance Imaging (MRI) typically recruits multiple sequences (defined here as "modalities"). As each modality is designed to offer different anatomical and functional clinical information, there are evident disparities in the imaging content across modalities. Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging, as for example before imaging biomarkers need to be derived and clinically evaluated across different MRI modalities, time phases and slices. Although commonly needed in real clinical scenarios, affine and non-rigid image registration is not extensively investigated using a single unsupervised model architecture. In our work, we present an unsupervised deep learning registration methodology that can accurately model affine and non-rigid transformations, simultaneously. Moreover, inverse-consistency is a fundamental inter-modality registration property that is not considered in deep learning registration algorithregistrations in the clinical setting.Multi-object tracking in video surveillance is subjected to illumination variation, blurring, motion, and similarity variations during the identification process in real-world practice. The previously proposed applications have difficulties in learning the appearances and differentiating the objects from sundry detections. They mostly rely heavily on local features and tend to lose vital global structured features such as contour features. This contributes to their inability to accurately detect, classify or distinguish the fooling images. In this paper, we propose a paradigm aimed at eliminating these tracking difficulties by enhancing the detection quality rate through the combination of a convolutional neural network (CNN) and a histogram of oriented gradient (HOG) descriptor. We trained the algorithm with an input of 120 × 32 images size and cleaned and converted them into binary for reducing the numbers of false positives. In testing, we eliminated the background on frames size and applied morphological operations and Laplacian of Gaussian model (LOG) mixture after blobs. The images further underwent feature extraction and computation with the HOG descriptor to simplify the structural information of the objects in the captured video images. Selleck A939572 We stored the appearance features in an array and passed them into the network (CNN) for further processing. We have applied and evaluated our algorithm for real-time multiple object tracking on various city streets using EPFL multi-camera pedestrian datasets. The experimental results illustrate that our proposed technique improves the detection rate and data associations. Our algorithm outperformed the online state-of-the-art approach by recording the highest in precisions and specificity rates.Aiming at the task allocation problem of heterogeneous unmanned underwater vehicle (UUV) swarms, this paper proposes a dynamic extended consensus-based bundle algorithm (DECBBA) based on consistency algorithm. Our algorithm considers the multi-UUV task allocation problem that each UUV can individually complete multiple tasks, constructs a "UUV-task" matching matrix and designs new marginal utility, reward and cost functions for the influence of time, path and UUV voyage. Furthermore, in view of the unfavorable factors that restrict the underwater acoustic communication range between UUVs in the real environment, our algorithm complete dynamic task allocation of UUV swarms with optimization in load balance indicator by the update of the UUV individual and the task completion status in the discrete time stage. The performance indicators (including global utility and task completion rate) of the dynamic task allocation algorithm in the scenario with communication constraints can be well close to the static algorithm in the ideal scenario without communication constraints. The simulation experiment results show that the algorithm proposed in this paper can quickly and efficiently obtain the dynamic and conflict-free task allocation assignment of UUV swarms with great performance.Industry 4.0 smart manufacturing systems are equipped with sensors, smart machines, and intelligent robots. The automated in-plant transportation of manufacturing parts through throwing and catching robots is an attempt to accelerate the transportation process and increase productivity by the optimized utilization of in-plant facilities. Such an approach requires intelligent tracking and prediction of the final 3D catching position of thrown objects, while observing their initial flight trajectory in real-time, by catching robot in order to grasp them accurately. Due to non-deterministic nature of such mechanically thrown objects' flight, accurate prediction of their complete trajectory is only possible if we accurately observe initial trajectory as well as intelligently predict remaining trajectory. The thrown objects in industry can be of any shape but detecting and accurately predicting interception positions of any shape object is an extremely challenging problem that needs to be solved step by step. In this research work, we only considered spherical shape objects as their3D central position can be easily determined. Our work comprised of development of a 3D simulated environment which enabled us to throw object of any mass, diameter, or surface air friction properties in a controlled internal logistics environment. It also enabled us to throw object with any initial velocity and observe its trajectory by placing a simulated pinhole camera at any place within 3D vicinity of internal logistics. We also employed multi-view geometry among simulated cameras in order to observe trajectories more accurately. Hence, it provided us an ample opportunity of precise experimentation in order to create enormous dataset of thrown object trajectories to train an encoder-decoder bidirectional LSTM deep neural network. The trained neural network has given the best results for accurately predicting trajectory of thrown objects in real time.Infrared image simulation is challenging because it is complex to model. To estimate the corresponding infrared image directly from the visible light image, we propose a three-level refined light-weight generative adversarial network with cascaded guidance (V2T-GAN), which can improve the accuracy of the infrared simulation image. V2T-GAN is guided by cascading auxiliary tasks and auxiliary information the first-level adversarial network uses semantic segmentation as an auxiliary task, focusing on the structural information of the infrared image; the second-level adversarial network uses the grayscale inverted visible image as the auxiliary task to supplement the texture details of the infrared image; the third-level network obtains a sharp and accurate edge by adding auxiliary information of the edge image and a displacement network. Experiments on the public dataset Multispectral Pedestrian Dataset demonstrate that the structure and texture features of the infrared simulation image obtained by V2T-GAN are correct, and outperform the state-of-the-art methods in objective metrics and subjective visualization effects.Increase in trading and travelling flows has resulted in the need for non-intrusive object inspection and identification methods. Traditional techniques proved to be effective for decades; however, with the latest advances in technology, the intruder can implement more sophisticated methods to bypass inspection points control techniques. The present study provides an overview of the existing and developing techniques for non-intrusive inspection control, current research trends, and future challenges in the field. Both traditional and developing methods, techniques, and technologies were analyzed with the use of traditional and novel sensor types. Finally, it was concluded that the improvement of non-intrusive inspection experience could be gained with the additional use of novel types of sensors (such as biosensors) combined with traditional techniques (X-ray inspection).The Internet Engineering Task Force (IETF) has standardized a new framework, called Static Context Header Compression and fragmentation (SCHC), which offers adaptation layer functionality designed to support IPv6 over Low Power Wide Area Networks (LPWANs). The IETF is currently profiling SCHC, and in particular its packet fragmentation and reassembly functionality, for its optimal use over certain LPWAN technologies. Considering the energy constraints of LPWAN devices, it is crucial to determine the energy performance of SCHC packet transfer. In this paper, we present a current and energy consumption model of SCHC packet transfer over Sigfox, a flagship LPWAN technology. The model, which is based on real hardware measurements, allows to determine the impact of several parameters and fragment transmission strategies on the energy performance of SCHC packet transfer over Sigfox. Among other results, we have found that the lifetime of a device powered by a 2000 mAh battery, transmitting packets every 5 days, is 168 days for 2250-byte packets, while it increases to 1464 days for 77-byte packets.Nowadays, manufacturers are shifting from a traditional product-centric business paradigm to a service-centric one by offering products that are accompanied by services, which is known as Product-Service Systems (PSSs). PSS customization entails configuring products with varying degrees of differentiation to meet the needs of various customers. This is combined with service customization, in which configured products are expanded by customers to include smart IoT devices (e.g., sensors) to improve product usage and facilitate the transition to smart connected products. The concept of PSS customization is gaining significant interest; however, there are still numerous challenges that must be addressed when designing and offering customized PSSs, such as choosing the optimum types of sensors to install on products and their adequate locations during the service customization process. In this paper, we propose a data warehouse-based recommender system that collects and analyzes large volumes of product usage data from similar products to the product that the customer needs to customize by adding IoT smart devices.

Autoři článku: Albrechtsenmorton9472 (Shapiro Banks)