Albertsenhowe2892
Given the high content of Ca2+ in waste paper recycling wastewater, the anaerobic granular sludge (AnGS) undergoes calcification during wastewater treatment and affects the treatment efficiency. To restore the activity of calcified AnGS and improve the performance of AnGS, four types of N-acyl-homoserine lactones (AHLs) were added to the AnGS system while papermaking wastewater treatment. The addition of N-butyryl-DL-homoserine lactone(C4-HSL) and N-octanoyl-DL-homoserine lactone (C8-HSL) had an inhibitory affect the COD removal efficiency and SMA of sludge at the inception. The addition of N-hexanoyl-L-homoserine lactone (C6-HSL) has no obvious effect on the COD removal efficiency, but can improve the SMA of sludge more obviously. The addition of N-(β-ketocaproyl)-DL-homoserine lactone (3O-C6-HSL) can increased COD removal efficiency and promoted SMA together obviously. The addition of C6-HSL and 3O-C6-HSL can increase volatile suspended solid (VSS)/total suspended solid (TSS), and regulate extracellular polymeric substance (EPS) secretion in AnGS. Analysis of microbial sequencing revealed changes in the microbial community structure following AHL addition, which enhanced the methane metabolism pathway in sludge. The addition of C6-HSL, C8-HSL, and 3O-C6-HSL increased Methanosaeta population, thus increasing the aceticlastic pathway in sludge. Thus, exogenous AHLs can play an important role in regulating microbial community structure, and in improving the performance of AnGS.The aim of the present study was the assessment of the sub-chronic effects of silver (AgNPs) and gold nanoparticles (AuNPs) of 40 nm primary size either stabilised with citrate (CIT) or coated with polyethylene glycol (PEG) on the freshwater invertebrate Gammarus fossarum. Silver nitrate (AgNO3) was used as a positive control in order to study the contribution of silver ions potentially released from AgNPs on the observed effects. A multibiomarker approach was used to assess the long-term effects of AgNPs and AuNPs 40 nm on molecular, cellular, physiological and behavioural responses of G. MAPK inhibitor fossarum. Specimen of G. fossarum were exposed for 15 days to 0.5 and 5 µgL-1 of CIT and PEG AgNPs and AuNPs 40 nm in the presence of food. A significant uptake of both Ag and Au was observed in exposed animals but was under the toxic threshold leading to mortality of G. fossarum. Silver nanoparticles (CIT-AgNPs and PEG-AgNPs 40 nm) led to an up-regulation of Na+K+ATPase gene expression. An up-regulation of Catalse and Chitinase gene expressions due to exposure to PEG-AgNPs 40 nm was also observed. Gold nanoparticles (CIT and PEG-AuNPs 40 nm) led to an increase of CuZnSOD gene expression. Furthermore, both AgNPs and AuNPs led to a more developed digestive lysosomal system indicating a general stress response in G. fossarum. Both AgNPs and AuNPs 40 nm significantly affected locomotor activity of G. fossarum while no effects were observed on haemolymphatic ions and ventilation.The coal pyrolysis wastewater (CPW) contributed to aquatic environment contamination with amount of aromatic pollutants, and the research on joint toxicity of the mixture of aromatic compounds was vital for environmental protection. By using Tetrahymena thermophile as non-target organism, the joint toxicity of typical nonpolar narcotics and polar narcotics in CPW was investigated. The results demonstrated that the nonpolar narcotics exerted chronic and reversible toxicity by hydrophobicity-based membrane perturbation, while polar narcotics performed acute toxicity by irreversible damage of cells. As the most hydrophobic nonpolar narcotics, indole and naphthalene caused the highest joint toxicity in 24 h with the lowest EC50mix (24.93 mg/L). For phenolic compounds, the combination of p-cresol and p-nitrophenol also showed the top toxicity (EC50mix = 10.9 mg/L) with relation to high hydrophobicity, and the joint toxicity was obviously stronger and more acute than that of nonpolar narcotics. Furthermore, by studying the joint toxicity of nonpolar narcotics and polar narcotics, the hydrophobicity-based membrane perturbation was the first step of toxicity effects, and afterwards the acute toxicity induced by electrophilic polar substituents of phenols dominated joint toxicity afterwards. This toxicity investigation was critical for understanding universal and specific effects of CPW to aquatic organisms.Psychiatric drugs are among the leading medications prescribed for humans, with their presence in aquatic environments raising concerns relating to potentially harmful effects on non-target organisms. Nortriptyline (NTP) is a selective serotonin-norepinephrine reuptake inhibitor antidepressant, widely used in clinics and found in environmental water matrices. In this study, we evaluated the toxic effects of NTP on zebrafish (Danio rerio) embryos and early larval stages. Developmental and mortality analyses were performed on zebrafish exposed to NTP for 168 h at concentrations ranging from 500 to 46,900 µg/L. Locomotor behaviour and acetylcholinesterase (AChE) activity were evaluated by exposing embryos/larvae to lower NTP concentrations (0.006-500 µg/L). The median lethal NTP concentration after 168 h exposure was 2190 µg/L. Although we did not identify significant developmental changes in the treated groups, lack of equilibrium was already visible in surviving larvae exposed to ≥ 500 µg/L NTP. The behavioural analyses showed that NTP was capable of modifying zebrafish larvae swimming behaviour, even at extremely low (0.006 and 0.088 µg/L) environmentally relevant concentrations. We consistently observed a significant reduction in AChE activity in the animals exposed to 500 µg/L NTP. Our results highlight acute toxic effects of NTP on the early-life stages of zebrafish. Most importantly, exposure to environmentally relevant NTP concentrations may affect zebrafish larvae locomotor behaviour, which in turn could reduce the fitness of the species. More studies involving chronic exposure and sensitive endpoints are warranted to better understand the effect of NTP in a more realistic exposure scenario.This study aimed to explore the toxicity of environmental residues of graphene oxide nanoparticles (GONPs) to reproduction of Lepidopteron insects using both ovary cell line (BmN) and individual female Bombyx mori as the research subjects. The results showed that GONPs dose dependently affect BmN cells. At higher concentrations (>25 mg/L), GONPs led to oxidative stress, ROS accumulation and DNA damage in BmN cells and significantly reduced their survival rate (p ≤ 0.05). Moreover, feeding female B. mori larvae with mulberry leaves treated with 25 mg/L GONPs significantly decreased their gonadosomatic index (GSI) by 40.84%, and increased oxidation levels and antioxidant enzyme activity in silkworm ovary tissues. Pathological analysis found that exposure to GONPs decreased the numbers of both oogonia and oocytes in ovarian tissues, increased the formation of peroxisome and vacuoles in follicle cells, reduced the transcription of genes (Vg, Ovo, Sxl-s, Sxl-l, and Otu) related to ovarian development in B. mori by 0.