Ahmadmaclean4143
We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and spontaneous creation of wave polarization singularities determined by the band Chern number. Our analytical and numerical results establish modulational instability as a tool to probe bulk topological invariants and create topologically nontrivial wave fields.Solar-mass black holes with masses in the range of ∼1-2.5 M_⊙ are not expected from conventional stellar evolution, but can be produced naturally via neutron star (NS) implosions induced by capture of small primordial black holes (PBHs) or from accumulation of some varieties of particle dark matter. We argue that a unique signature of such "transmuted" solar-mass BHs is that their mass distribution would follow that of the NSs. This would be distinct from the mass function of black holes in the solar-mass range predicted either by conventional stellar evolution or early Universe PBH production. We propose that analysis of the solar-mass BH population mass distribution in a narrow mass window of ∼1-2.5 M_⊙ can provide a simple yet powerful test of the origin of these BHs. Recent LIGO/VIRGO gravitational wave (GW) observations of the binary merger events GW190425 and GW190814 are consistent with a BH mass in the range ∼1.5-2.6 M_⊙. Though these results have fueled speculation on dark matter-transmuted solar-mass BHs, we demonstrate that it is unlikely that the origin of these particular events stems from NS implosions. Data from upcoming GW observations will be able to distinguish between solar-mass BHs and NSs with high confidence. This capability will facilitate and enhance the efficacy of our proposed test.We present a new bound on the ultralight axion (ULA) dark matter mass m_a, using the Lyman-alpha forest to look for suppressed cosmic structure growth a 95% lower limit m_a>2×10^-20 eV. This strongly disfavors (>99.7% credibility) the canonical ULA with 10^-22 eV less then m_a less then 10^-21 eV, motivated by the string axiverse and solutions to possible tensions in the cold dark matter model. We strengthen previous equivalent bounds by about an order of magnitude. We demonstrate the robustness of our results using an optimized emulator of improved hydrodynamical simulations.We present the next-to-next-to-leading order (NNLO) calculation of quark quasiparton distribution functions (PDFs) in the large momentum effective theory. The nontrivial factorization at this order is established explicitly and the full analytic matching coefficients between the quasidistribution and the light-cone distribution are derived. We demonstrate that the NNLO numerical contributions can improve the behavior of the extracted PDFs sizably. With the unprecedented precision study of nucleon tomography at the planned electron-ion collider, high precision lattice QCD simulations with our NNLO results implemented will enable to test the QCD theory and more precise results on the PDFs of nucleons will be obtained.Supercell models are often used to calculate the electronic structure of local deviations from the ideal periodicity in the bulk or on the surface of a crystal or in wires. When the defect or adsorbent is charged, a jellium counter charge is applied to maintain overall neutrality, but the interaction of the artificially repeated charges has to be corrected, both in the total energy and in the one-electron eigenvalues and eigenstates. This becomes paramount in slab or wire calculations, where the jellium counter charge may induce spurious states in the vacuum. We present here a self-consistent potential correction scheme and provide successful tests of it for bulk and slab calculations.The yield of charged particles opposite to a Z boson with large transverse momentum (p_T) is measured in 260 pb^-1 of pp and 1.7 nb^-1 of Pb+Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quark-gluon plasma created in Pb+Pb collisions. Compared with pp collisions, charged-particle yields in Pb+Pb collisions show significant modifications as a function of charged-particle p_T in a way that depends on event centrality and Z boson p_T. The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p_T regime difficult to measure through other channels.Single-photon pulses cannot be generated on demand, due to incompatible requirements of positive frequencies and positive times. Resulting states therefore contain small probabilities for multiphotons. We derive upper and lower bounds for the maximum fidelity of realizable states that approximate single-photon pulses. The bounds have implications for ultrafast optics; the maximum fidelity is low for pulses with few cycles or close to the onset, but increases rapidly as the pulse envelope varies more slowly. We also demonstrate strictly localized states that are close to single photons.Quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA) are two special cases of the following control problem apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we analytically apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or "bang-bang") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. To support this theoretical work, we carry out simulations of various transverse field Ising models, demonstrating that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.We present for the first time complete next-to-next-to-leading-order coefficient functions to match flavor nonsinglet quark correlation functions in position space, which are calculable in lattice QCD, to parton distribution functions (PDFs). Using PDFs extracted from experimental data and our calculated matching coefficients, we predict valence-quark correlation functions that can be confronted by lattice QCD calculations. The uncertainty of our predictions is greatly reduced with higher order matching coefficients. By performing Fourier transformation, we also obtain matching coefficients for corresponding quasi-PDFs and pseudo-PDFs. Our method of calculations can be readily generalized to evaluate the matching coefficients for sea-quark and gluon correlation functions, making the program to extract partonic structure of hadrons from lattice QCD calculations comparable with and complementary to that from experimental measurements.We introduce different types of quenches to probe the nonequilibrium dynamics and multiple collective modes of bilayer fractional quantum Hall states. We show that applying an electric field in one layer induces oscillations of a spin-1 degree of freedom, whose frequency matches the long-wavelength limit of the dipole mode. On the other hand, oscillations of the long-wavelength limit of the quadrupole mode, i.e., the spin-2 graviton, as well as the combination of two spin-1 states, can be activated by a sudden change of band mass anisotropy. We construct an effective field theory to describe the quench dynamics of these collective modes. In particular, we derive the dynamics for both the spin-2 and the spin-1 states and demonstrate their excellent agreement with numerics.The MoEDAL trapping detector consists of approximately 800 kg of aluminum volumes. It was exposed during run 2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminum volumes comprising the detector through a superconducting quantum interference device (SQUID) magnetometer. The presence of a trapped dyon would be signaled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to five Dirac charges (5g_D) and an electric charge up to 200 times the fundamental electric charge for mass limits in the range 870-3120 GeV and also monopoles with magnetic charge up to and including 5g_D with mass limits in the range 870-2040 GeV.We measure cross-beam energy transfer (CBET) saturation by ion heating in a gas-jet plasma characterized using Thomson scattering. A wavelength-tunable ultraviolet (UV) probe laser beam interacts with four intense UV pump beams to drive large-amplitude ion-acoustic waves. For the highest-intensity interactions, the power transfer to the probe laser drops, demonstrating ion-acoustic wave saturation. Over this time, the ion temperature is measured to increase by a factor of 7 during the 500-ps interaction. Particle-in-cell simulations show ion trapping and a subsequent ion heating consistent with measurements. Linear kinetic CBET models are found to agree well with the observed energy transfer when the measured plasma conditions are used.We present a metastructure architecture with a bistable microstructure that enables extreme broadband frequency conversion. We use numerical and experimental tools to unveil the relationship between input excitations at the unit cell level and output responses at the macrostructural level. We identify soliton-lattice mode resonances resulting in input-independent energy transfer into desired metabeam vibration modes as long as transition waves are triggered within the metastructure. We observe both low-to-high and high-to-low incommensurate frequency interactions in the metabeams, thus enabling energy exchange between bands 2 orders of magnitude apart. This behavior generalizes fluxon-cavity mode resonance in superconducting electronics, providing a general method to extreme frequency conversion in mechanics. Importantly, the introduced architecture allows for expanding the metamaterials design paradigm by fundamentally breaking the dependence of macroscopic dynamics on the unit cell properties. The resulting input-independent nature implies potential applications in broadband frequency regulation and energy transduction.Charge transport in doped quantum paraelectrics (QPs) presents a number of puzzles, including a pronounced T^2 regime in the resistivity. We analyze charge transport in a QP within a model of electrons coupled to a soft transverse optical (TO) mode via a two-phonon mechanism. For T above the soft-mode frequency but below some characteristic scale (E_0), the resistivity scales with the occupation number of phonons squared, i.e., as T^2. The T^2 scattering rate does not depend on the carrier number density and is not affected by a crossover between degenerate and nondegenerate regimes, in agreement with the experiment. Temperatures higher than E_0 correspond to a nonquasiparticle regime, which we analyze by mapping the Dyson equation onto a problem of supersymmetric quantum mechanics. Setanaxib The combination of scattering by two TO phonons and by a longitudinal optical mode explains the data quite well.