Ahmadgleason4578
In summary, this work provides a temporal analysis of adipocyte differentiation and uncovers early metabolic events that stimulate transcriptional reprogramming.Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. Captisol These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.Bone stroma contributes to the regulation of osteogenesis and hematopoiesis but also to fracture healing and disease processes. Mesenchymal stromal cells from bone (BMSCs) represent a heterogenous mixture of different subpopulations with distinct molecular and functional properties. The lineage relationship between BMSC subsets and their regulation by intrinsic and extrinsic factors are not well understood. Here, we show with mouse genetics, ex vivo cell differentiation assays, and transcriptional profiling that BMSCs from metaphysis (mpMSCs) and diaphysis (dpMSCs) are fundamentally distinct. Fate-tracking experiments and single-cell RNA sequencing indicate that bone-forming osteoblast lineage cells and dpMSCs, including leptin receptor-positive (LepR+) reticular cells in bone marrow, emerge from mpMSCs in the postnatal metaphysis. Finally, we show that BMSC fate is controlled by platelet-derived growth factor receptor β (PDGFRβ) signaling and the transcription factor Jun-B. The sum of our findings improves our understanding of BMSC development, lineage relationships, and differentiation.Developmental biologists have always relied on imaging to shed light on dynamic cellular events. However, processes such as mammalian fertilization and embryogenesis are generally inaccessible for direct imaging. In consequence, how the oviduct (fallopian tube) facilitates the transport of gametes and preimplantation embryos continues to be unanswered. Here we present a combination of intravital window and optical coherence tomography for dynamic, volumetric, in vivo imaging of oocytes and embryos as they are transported through the mouse oviduct. We observed location-dependent circling, oscillating, and long-distance bi-directional movements of oocytes and embryos that suggest regulatory mechanisms driving transport and question established views in the field. This in vivo imaging approach can be combined with a variety of genetic and pharmacological manipulations for live functional analysis, bringing the potential to investigate reproductive physiology in its native state.Marmosets are an increasingly important model system for neuroscience in part due to genetic tractability and enhanced cortical accessibility, due to a lissencephalic neocortex. However, many of the techniques generally employed to record neural activity in primates inhibit the expression of natural behaviors in marmosets precluding neurophysiological insights. To address this challenge, we have developed methods for recording neural population activity in unrestrained marmosets across multiple ethological behaviors, multiple brain states, and over multiple years. Notably, our flexible methodological design allows for replacing electrode arrays and removal of implants providing alternative experimental endpoints. We validate the method by recording sensorimotor cortical population activity in freely moving marmosets across their natural behavioral repertoire and during sleep.The spleen comprises defined microanatomical compartments that uniquely contribute to its diverse host defense functions. Here, we identify a vascular compartment within the red pulp of the spleen delineated by expression of the atypical chemokine receptor 4 (ACKR4) in endothelial cells. ACKR4-positive vessels form a three-dimensional sinusoidal network that connects via shunts to the marginal sinus and tightly surrounds the outer perimeter of the marginal zone. Endothelial cells lining this vascular compartment express ACKR4 as part of a distinct gene expression profile. We show that T cells enter the spleen largely through this peri-marginal sinus and initially localize extravascularly around these vessels. In the absence of ACKR4, homing of T cells into the spleen and subsequent migration into T cell areas is impaired, and organization of the marginal zone is severely affected. Our data delineate the splenic peri-marginal sinus as a compartment that supports spleen homing of T cells.Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.