Aguirredaniels5476

Z Iurium Wiki

Vascular endothelial cell senescence is an important cause of cardiac-related diseases. Mitochondrial reactive oxygen species (mtROS) have been implicated in cellular senescence and multiple cardiovascular disorders. CR6 interacting factor 1 (CRIF1) deficiency has been shown to increase mtROS via the inhibition of mitochondrial oxidative phosphorylation; however, the mechanisms by which mtROS regulates vascular endothelial senescence have not been thoroughly explored. The goal of this study was to investigate the effects of CRIF1 deficiency on endothelial senescence and to elucidate the underlying mechanisms. CRIF1 deficiency was shown to increase the activity of senescence-associated β-galactosidase along with increased expression of phosphorylated p53, p21, and p16 proteins. Cell cycle arrested in the G0/G1 phase were identified in CRIF1-deficient cells using the flow cytometry. Furthermore, CRIF1 deficiency was also shown to increase cellular senescence by reducing the expression of Sirtuin 3 (SIRT3) via ubiquitin-mediated degradation of transcription factors PGC1α and NRF2. Downregulation of CRIF1 also attenuated the function of mitochondrial antioxidant enzymes including manganese superoxide dismutase (MnSOD), Foxo3a, nicotinamide-adenine dinucleotide phosphate, and glutathione via the suppression of SIRT3. Interestingly, overexpression of SIRT3 in CRIF1-deficient endothelial cells not only reduced mtROS levels by elevating expression of the antioxidant enzyme MnSOD but also decreased the expression of cell senescence markers. Taken together, these results suggest that CRIF1 deficiency induces vascular endothelial cell senescence via ubiquitin-mediated degradation of the transcription coactivators PGC1α and NRF2, resulting in decreased expression of SIRT3. Alzheimer's disease (AD) is a complex disease involved oxidative stress and inflammation in its pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active triterpenoid compound from extracts of Boswellia serrata, which has been widely used as an antioxidant and anti-inflammatory agent. The present study was to determine whether AKBA, a novel candidate, could protect against cognitive and neuropathological impairments in AD. We found that AKBA treatment resulted in a significant improvement of learning and memory deficits, a dramatic decrease in cerebral amyloid-β (Aβ) levels and plaque burden, a profound alleviation in oxidative stress and inflammation, and a marked reduction in activated glial cells and synaptic defects in the APPswe/PS1dE9 mice. Furthermore, amyloid precursor protein (APP) processing was remarkably suppressed with AKBA treatment by inhibiting beta-site APP cleaving enzyme 1 (BACE1) protein expression to produce Aβ in the APPswe/PS1dE9 mice brains. Mechanistically, AKBA modulated antioxidant and anti-inflammatory pathways via increasing nuclear erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression, and via declining phosphorylation of inhibitor of nuclear factor-kappa B alpha (IκBα) and p65. Collectively, our findings provide evidence that AKBA protects neurons against oxidative stress and inflammation in AD, and this neuroprotective effect involves the Nrf2/HO-1 and nuclear factor-kappa B (NF-κB) signaling pathways. Amphiphilic drug conjugates can self-assemble into nanovehicles for cancer drug delivery, but the key is to design stable yet intracellular labile drug linkers for drug retention during blood circulation but fast intracellular drug release. The conjugation of paclitaxel (PTX) is generally via the ester of its 2'-hydroxyl group, but the ester is either too stable to release PTX in the cytosol or so labile that hydrolyzes during circulation. Herein, we report a p-(boronic ester)benzyl-based tumor-specifically cleavable linker for preparing PTX-conjugate with polyethylene glycol (PEG, Mw = 5000 Da) (PEG-B-PTX). The amphiphilic PEG-B-PTX self-assembled into micelle with an average size of ~50 nm and a PTX loading content of 13.3 wt%. The PEG-B-PTX micelles were very stable at the normal physiological environment and thus circulated long in the blood compartment, but fast dissociated and released PTX in response to the elevated reactive‑oxygen species (ROS) level in tumors. The conjugate micelles showed significantly improved antitumor efficiency in vitro and in vivo against human glioma and breast cancer cells, and reduced toxicity compared to the clinically used Taxol. Thus, the PTX-conjugate micelles were characteristic of well-characterized chemical structure and nanostructure, precise and reproducible drug loading efficiency (i.e., 100%) and fixed loading content, high PTX loading content due to PTX itself as part of the carrier, no burst drug release, and easy and reproducible fabrication of the micelles, which are all essential for clinical translation. Acetaminophen (APAP) overdose causes hepatotoxicity involving mitochondrial dysfunction. Previous studies showed that translocation of Fe2+ from lysosomes into mitochondria by the mitochondrial Ca2+ uniporter (MCU) promotes the mitochondrial permeability transition (MPT) after APAP. Here, our Aim was to assess protection by iron chelation and MCU inhibition against APAP hepatotoxicity in mice. C57BL/6 mice and hepatocytes were administered toxic doses of APAP with and without starch-desferal (an iron chelator), minocycline (MCU inhibitor), or N-acetylcysteine (NAC). In mice, starch-desferal and minocycline pretreatment decreased ALT and liver necrosis after APAP by >60%. At 24 h after APAP, loss of fluorescence of mitochondrial rhodamine 123 occurred in pericentral hepatocytes often accompanied by propidium iodide labeling, indicating mitochondrial depolarization and cell death. Starch-desferal and minocycline pretreatment decreased mitochondrial depolarization and cell death by more than half. PF-3758309 order In cultured hepatocytes, cell killing at 10 h after APAP decreased from 83% to 49%, 35% and 27%, respectively, by 1 h posttreatment with minocycline, NAC, and minocycline plus NAC. With 4 h posttreatment in vivo, minocycline and minocycline plus NAC decreased ALT and necrosis by ~20% and ~50%, respectively, but NAC alone was not effective. In conclusion, minocycline and starch-desferal decrease mitochondrial dysfunction and severe liver injury after APAP overdose, suggesting that the MPT is likely triggered by iron uptake into mitochondria through MCU. In vivo, minocycline and minocycline plus NAC posttreatment after APAP protect at later time points than NAC alone, indicating that minocycline has a longer window of efficacy than NAC. BACKGROUND Concanavalin A (ConA) is a well-established model to induce autoimmune hepatitis (AIH) in mice which mimics pathological alterations that occur in human. The pathogenesis of ConA-induced AIH involves many signaling pathways. Montelukast is a leukotriene receptor antagonist that is mainly used in the management of asthma. The antioxidant, anti-inflammatory and anti-apoptotic effects of montelukast have been reported in previous studies. Lately, montelukast has been documented to confer protection against various inflammatory diseases. Up to date, no study has explored the effect of montelukast on AIH induced by ConA. AIM AND METHOD This study aims to detect the protective effects of montelukast (10 mg/kg) on ConA (20 mg/kg)- induced AIH in mice and to demonstrate its hepatoprotective mechanisms. Hepatic function, histological changes, oxidative stress, inflammation, autophagy, and apoptotic markers were investigated. RESULTS Hepatic function and histological data revealed that treatment with montelukast significantly attenuated ConA-induced hepatic damage. Montelukast significantly reduced JNK level and NFκB p65 expression, and inhibited proinflammatory cytokines (TNF-α and IL-6) as well as oxidative stress (MDA, NO, and GSH). Moreover, inflammatory cells (CD4+ infiltration and the levels of apoptotic markers (Bax and caspase-3) besides autophagy biomarkers (Beclin1 and LC3) were reduced. CONCLUSION Our results suggest that montelukast could be a potential therapeutic drug against the ConA-induced AIH through its anti-oxidant, anti-inflammatory, anti- autophagy as well as anti-apoptotic properties. Recently, we described a family of non-targeting monomethylauristatin E (MMAE) antibody-drug conjugates (ADCs) whose pharmacokinetics could be tuned through incorporation of a short polyethylene glycol (PEG) moiety of up to twelve units into a drug-linker to render the ADC surface more hydrophilic. That work demonstrated that more hydrophilic ADCs were simultaneously more effective and better tolerated in mouse models, suggesting an improvement in therapeutic index via this strategy. Here, we describe the biodistribution and toxicology assessments in Sprague-Dawley rats after intravenous dosing with the aim of elucidating the relationships between these biological outcomes and the underlying physicochemical properties of non-targeted ADCs. Dosing a non-PEGylated ADC exhibited rapid nonspecific cellular uptake, leading to ADC catabolism and rapid release of the cytotoxic payload which reached peak plasma and tissue concentrations within the first day. Introduction of a PEG chain of four, eight, or twelve units resulted in increasingly slower uptake and decreases in peak payload concentrations in all tissues. These ADCs with minimal non-specific uptake also exhibited substantially less hematologic toxicity, with reduced histologic depletion of bone marrow and less dramatic decreases and/or more rapid recovery in peripheral hematologic cell counts (neutrophils, platelets, and reticulocytes). These results support a strong correlation between ADC hydrophobicity, rate of non-specific uptake, peak tissue concentration of released payload, and resulting toxicology parameters. Should these correlations be translatable to the clinic, this would provide a more general and highly tractable strategy for reducing the antigen-independent toxicity of ADCs through drug-linker design to modulate non-specific biodistribution. Alcohol exposure during development produces physical and mental abnormalities in the foetus that result in long-term molecular adjustments in the brain, which could underlie the neurobehavioural deficits observed in individuals suffering from foetal alcohol spectrum disorders. In this study, we assessed the effects of curcumin on cognitive impairments caused by prenatal and lactational alcohol exposure (PLAE). Furthermore, we examined whether curcumin could counteract the molecular alterations that may underlie these behavioural impairments. We focused on inflammatory and epigenetic mechanisms by analysing the expression of pro-inflammatory mediators, such as IL-6, TNF-α, and NF-κB, in the hippocampus and prefrontal cortex, as well as microglia and astrocyte activation in the dentate gyrus. We also assessed the activity of histone acetyltransferase in these brain areas. To model binge alcohol drinking, we exposed pregnant C57BL/6 mice to a 20% v/v alcohol solution during gestation and lactation, with limited access periods. We treated male offspring with curcumin during postnatal days (PD28-35) and then evaluated their behaviour in adulthood (PD60). Our results showed that curcumin treatment during the peri-adolescence period improved the anxiety and memory deficits observed in PLAE mice. At the molecular level, we found enhanced histone acetyltransferase activity in mice subjected to PLAE that curcumin treatment could not reverse to baseline levels. These mice also showed increased expression of pro-inflammatory mediators, which could be rescued by curcumin treatment. They also displayed astrogliosis and microglia activation. Our study provides further evidence to support the use of curcumin as a therapeutic agent for counteracting behavioural and molecular alterations induced by PLAE.

Autoři článku: Aguirredaniels5476 (Lamm Camp)