Aguilardemir6857
0001) improvement in all criteria related to the five core pillars. These results illustrate that the aims of the online mentorship program were achieved through a unique and adaptive online educational model and that our model has demonstrated its effectiveness as an innovative structured educational experience through the COVID-19 crisis.Mangifera caesia and Ficus auriculata are neglected fruits found in Malaysia and are locally known as "buah binjai" and "buah ara", respectively. To profile the metabolites for both fruits, we conducted a robust 1 H-nuclear magnetic resonance (NMR)-based metabolomics approach. Principal component analysis (PCA) and partial least square (PLS) analyses were applied to distinguish the metabolites variations of M. caesia and F. auriculata fruits extracted with different ethanol ratios (0, 70, and 100%). In total, 34 metabolites were identified in M. caesia and F. auriculata fruits. The 70% ethanol extracts of both fruits displayed the highest antioxidant and α-glucosidase inhibitory activities, as well as notable with the highest phenolic content, compared with the other samples. selleck products The present metabolomics study shows that the polarities of solvent extractions play a crucial role in the assessment and recovery of the metabolites for the high value of natural antioxidants and α-glucosidase inhibitors in M. caesia and F. auriculata fruits. PRACTICAL APPLICATIONS Antioxidant and antidiabetic agents from fruit sources are increasingly becoming popular due to its potential contributions to human health, by protecting against infections and degenerative diseases. However, some of these fruits were neglected where the scientific data on their potential benefits and biochemical contents are lacking. The information gained from this study provides valuable knowledge on M. caesia and F. auriculata fruits as natural antioxidant and α-glucosidase inhibitors agents that might be beneficial to consumers, further promote the usage of neglected fruits as functional food and natural supplements.As they form, synapses go through various stages of maturation and refinement. These steps are linked to significant changes in synaptic function, potentially resulting in emergence and maturation of behavioral outputs. Synaptotagmins are calcium-sensing proteins of the synaptic vesicle exocytosis machinery, and changes in Synaptotagmin proteins at synapses have significant effects on vesicle release and synaptic function. Here, we examined the distribution of the synaptic vesicle protein Synaptotagmin 2a (Syt2a) during development of the zebrafish nervous system. Syt2a is widely distributed throughout the midbrain and hindbrain early during larval development but very weakly expressed in the forebrain. Later in development, Syt2a expression levels in the forebrain increase, particularly in regions associated with social behavior, and most intriguingly, around the time social behavior becomes apparent. We provide evidence that Syt2a localizes to synapses onto neurons implicated in social behavior in the ventral forebrain and show that Syt2a is colocalized with tyrosine hydroxylase, a biosynthetic enzyme in the dopamine pathway. Our results suggest a developmentally important role for Syt2a in maturing synapses in the forebrain, coinciding with the emergence of social behavior.In the present study, the effects of non-starch polysaccharide addition into noodle samples were determined in uncooked and cooked noodle samples from cooking, physicochemical, textural, and sensorial aspects. Turkish-type noodles were obtained using apple (AFN), carrot (CFN), inulin (IFN), and pea (PFN) fibers among the non-starch polysaccharides. Moreover, the sensory analyses were performed using elimination et choixtraduisant la realite-elimination and choice translating reality (ELECTRE), one of the multi-criteria decision-making approach methods. The cooking loss values were found to be low in the final products containing a high amount of dietary fibers. The hardest product among the cooked noodles was the noodle produced using pea fiber that was also the one with the lowest water absorption value. Because of the different characteristics of dietary fibers, the noodles also have different properties. Based on the criteria selected as a result of the ELECTRE analysis performed for sensorial analysis, the most preferred product following the control sample was found to be the IFN sample. The others were ranked as the ones obtained using pea, carrot, and apple fiber.Lipoxygenase (LOX, E.C. 1.13.11.12), among its various roles, catalyzes the degradation of polyunsaturated fatty acids and it is considered to be one of the main causes of undesirable off-flavor developments in legumes. The role of LOX in postharvest physiology is particularly significant in seeds with high values of lipoxygenase and linoleic acid levels. This research aimed to study the biochemical properties of the LOX extracted from green pea (Pisum sativum L. var. Léda, Zeusz, Zsuzsi), dry pea (Pisum sativum L. var. Hanka, Irina, Lutra), and lentil (Lens culinaris L., var. Pinklevi, Rézi, Castelluccio), using linoleic acid as a substrate. The raw extracts showed different catalytic properties, with dry pea (var. Irina) that expressed the highest LOX activity, while lentil (var. Pinklevi) expressed the lowest activity. To complete the biochemical characterization of the crude LOX extracts, their optimal pH and temperature were also examined. The highest value of lipoxygenase activity in the pH range 6-7 was measured in all legumes. The optimal temperature for all extracts fell within the range of 30-60°C given the nutritional importance of legumes. This study will serve as a basis for further detailed investigation of the legumes LOX activity and its roles in food products related to legumes. PRACTICAL APPLICATIONS This study investigated the biochemical properties of lipoxygenase (LOX) extracted from different varieties of lentil and pea, the two important leguminous crops serving as the main protein source for the population of humans worldwide. The biochemical properties of LOX extracted from legumes showed large differences in terms of kinetic properties. The results of this study revealed that the use of lipoxygenase can be a suitable index for managing stabilization techniques of lentil and pea, in order to inhibit the lipid oxidation in grain legume without compromising its nutritional value.