Aggerhaynes9117
The weathering carbon sink (CS) of rocks has a sensitive response to different influencing factors, and it is important to accurately distinguish this response in the global carbon cycle. However, no quantitative analysis of the response mechanism has been performed. In this study, the CS of the 12 types of terrestrial rocks in China from 2000 to 2014 is estimated using the GEM-CO2 model. The relative contribution rates of climate change and ecological restoration to the CS are quantitatively evaluated using the Lindeman-Merenda-Gold model. Results showed that (1) The CS of terrestrial rocks in China was 17.69 Tg C yr-1, and the CS flux (CSF) was 2.53 t C km-2 yr-1; mixed sedimentary rocks had the highest CS (6.89 Tg C yr-1), and carbonate rocks had the highest CSF (5.8 t C km-2 yr-1). (2) The average annual CSF slightly decreased at a rate of 5.4 kg C km-2 yr-1; the areas of the CSF that decreased in the south were the areas where water budget decreased significantly, and it was the areas with a reduced water budget and ecological deterioration in the north. (3) The relative contribution rates of water budget and precipitation reached 57% and 35%, respectively; the response of the CSF to temperature was evident in areas with low or decreasing temperatures, and the influence of fractional vegetation cover (FVC) on the CSF in low value area was evident. (4) Mixed sedimentary rocks and carbonate rocks displayed a more evident reduction trend in the CSF than other rocks. This research verified the applicability of the GEM-CO2 model in China and presented a scientific basis for quantitative assessment of the impact of climate change and ecological restoration on the CSF.Glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. They were launched as a safe solution for weed control, but recently, an increasing number of studies have shown the existence of GBH residues and highlighted the associated risks they pose throughout ecosystems. Conventional agricultural practices often include the use of GBHs, and the use of glyphosate-resistant genetically modified crops is largely based on the application of glyphosate, which increases the likelihood of its residues ending up in animal feed. ALK activation These residues persist throughout the digestive process of production animals and accumulate in their excretion products. The poultry industry, in particular, is rapidly growing, and excreted products are used as plant fertilizers in line with circular food economy practices. We studied the potential effects of unintentional glyphosate contamination on an agronomically important forage grass, meadow fescue (Festuca pratensis) and a horticulturally important strawberry (Fragaria x vescana) using glyphosate residues containing poultry manure as a plant fertilizer in a common garden experiment. Glyphosate in the manure decreased plant growth in both species and vegetative reproduction in F. x vescana. Furthermore, our results indicate that glyphosate residues in organic fertilizers might have indirect effects on sexual reproduction in F. pratensis and herbivory in F. x vescana because they positively correlate with plant size. Our results highlight that glyphosate can be unintentionally spread via organic fertilizer, counteracting its ability to promote plant growth.A hybrid electrochemical process with Ca(ClO)2 addition for simultaneous sludge dewaterability, stabilization and phosphorus fixation was proposed. Under optimal conditions (150 mg/g VS Ca(ClO)2, 15 V), the capillary suction time (CST) and specific resistance to filtration (SRF) were decreased by 88% and 92%, respectively. Efficient sludge stabilization with E. coli colonies of less than 1000 MPN/g TS was achieved. Phosphorus of 99% was removed from the filtrate and successfully fixed in the sludge cake and on the electrode surface. The integration of electrochemical and hypochlorite oxidation could effectively degrade the tightly bound extracellular polymeric substances (TB-EPS) structure with a total organic carbon (TOC) reduction of 52%. Besides, the disintegration of microbial cell envelopes was also achieved, with a reduction of living cell fraction of 98%. Furthermore, system pH could be maintained at near neutral (7.45) and the conversion of Fe(II) to Fe(III) was also facilitated with the addition of Ca(ClO)2, resulting in improved electrocoagulation process for enhanced sludge dewatering and phosphorus fixation. The multifunctional effects were achieved with the cooperated extracellular electrooxidation for EPS destruction and the active chlorine for intracellular microbial cell disintegration. This research provides a promising strategy for integrated sludge treatment and recycling for possible land utilization.Cars are a commuting lifeline worldwide, despite contributing significantly to air pollution. This is the first global assessment on air pollution exposure in cars across ten cities Dhaka (Bangladesh); Chennai (India); Guangzhou (China); Medellín (Colombia); São Paulo (Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Blantyre (Malawi); and Dar-es-Salaam (Tanzania). Portable laser particle counters were used to develop a proxy of car-user exposure profiles and analyse the factors affecting particulate matter ≤2.5 μm (PM2.5; fine fraction) and ≤10 μm (PM2.5-10; coarse fraction). Measurements were carried out during morning, off- and evening-peak hours under windows-open and windows-closed (fan-on and recirculation) conditions on predefined routes. For all cities, PM2.5 and PM10 concentrations were highest during windows-open, followed by fan-on and recirculation. Compared with recirculation, PM2.5 and PM10 were higher by up to 589% (Blantyre) and 1020% (São Paulo), during windows-open and hind highlight best practices.Atmospheric deposition of iron (Fe) can increase marine primary productivity, consequently affect ocean biogeochemical cycles and climate change. In this study, we develop an adaptor to generate anthropogenic Fe emission inventories for China in 2012 and 2016 via anthropogenic PM2.5 emissions from Multi-resolution Emission Inventory for China (MEIC) using local source-specific mass fractions of Fe in PM2.5. Using the generated emission inventories, we simulated Fe concentrations as well as dry deposition fluxes to China marginal seas using a WRF-CMAQ model during four campaign periods. The simulated Fe concentrations are in good agreement with observations except for those in presence of severe dust-intrusion events (NMB -13% ~ -27%), indicating a reasonably good performance of the generated Fe emissions and leaving the large underestimation of Fe concentrations mainly due to nature dust emissions. Simulated Fe concentrations over China marginal seas are in the range of 62-6.5 × 102 ng m-3, providing 2.0-12.5 μg m-2 d-1 to the seas during the study periods.