Adcockterry2225
In this study, cellulose nanofibers are used as a template to synthesise magnetic nanoparticles with a uniform size distribution. Magnetic nanoparticles are grafted on the surface of nanofibers via in situ hydrolysis of metal precursors at room temperature. Effects of different concentrations of nanofibers on the morphology, the crystallite size of magnetic nanoparticles, and the thermal and magnetic properties of the membrane produced from the cellulose nanofibers decorated with magnetic nanoparticles are examined. The sizes of magnetic nanoparticles produced in this study are below 20 nm, and the crystallite size of the nanoparticles is in the range of 96-130 Å. The flexible magnetic membranes containing a high concentration of magnetic nanoparticles (83-60 wt%) showed superparamagnetic behaviour with very high magnetic properties (67.4-38.5 emu g-1). The magnetic membrane was then used as an environmentally friendly, low-cost catalyst in a sulphate radical-based advanced oxidation process. The membranes successfully activated peroxymonosulphate (PMS) to remove Rhodamine B (RhB), a common hydrophilic organic dye applied in industry. 94.9 % of the Rhodamine B was degraded in 300 min at room temperature, indicating that the magnetic nanocellulose membrane is highly effective for catalyzing PMS to remove RhB. Crown V. All rights reserved.Dependence on fossil fuels such as oil, coal and natural gas are on alarming increase, thereby causing such resources to be in a depletion mode and a novel sustainable approach for bioenergy production are in demand. Successful implementation of zero waste discharge policy is one such way to attain a sustainable development of bioenergy. Zero waste discharge can be induced only through the conversion of organic wastes into bioenergy. Waste management is pivotal and considering its importance of minimizing the issue and menace of wastes, conversion strategy of organic waste is effectively recommended. Present review is concentrated on providing a keen view on the potential organic waste sources and the way in which the bioenergy is produced through efficient conversion processes. Biogas, bioethanol, biocoal, biohydrogen and biodiesel are the principal renewable energy sources. Different types of organic wastes used for bioenergy generation and its sources, anaerobic digestion-biogas production and its related process affecting parameters including fermentation, photosynthetic process and novel nano-inspired techniques are discussed. Bioenergy production from organic waste is associated with mitigation of lump waste generation and its dumping into land, specifically reducing all hazards and negativities in all sectors during waste disposal. A sustainable bioenergy sector with upgraded security for fuels, tackles the challenging climatic change problem also. Thus, intensification of organic waste conversion strategies to bioenergy, specially, biogas and biohydrogen production is elaborated and analyzed in the present article. Predominantly, persistent drawbacks of the existing organic waste conversion methods have been noted, providing consideration to economic, environmental and social development. The high emissions of polycyclic aromatic hydrocarbons (PAHs) pose a serious threat to the lake ecosystem and human health, and the human health risk assessment of PAH exposure is expected as an urgent project in China. This paper focused on 44 Chinese lakes in 6 lake zones to investigate the occurrence, composition and source of 19 PAHs in water body and estimate the human health risk under PAH exposure. The "List of PAH Priority Lakes" in China was generated based on the combination of incremental lifetime cancer risk (ILCR) model and Monte Carlo simulation. Our results showed that the Σ17 PAHs ranged from 3.75 ng·L-1 to 368.68 ng·L-1 with a median of 55.88 ng·L-1. Low-ring PAHs were the predominant compounds. https://www.selleckchem.com/products/gyy4137.html PAH profiles varied significantly at lake zone level. Diagnostic ratios showed that PAHs might derive from petroleum and coal or biomass combustion. Benzo[a]pyrene-equivalent toxic concentrations (BaPeq) of the Σ17 PAHs ranged from 0.07 ng·L-1 to 2.26 ng·L-1 (0.62 ± 0.52 ng·L-1, mean ± standard deviation) with a median of 0.47 ng·L-1. Benzo[a]anthracene (BaA), benzo[a]pyrene (BaP) and benzo[e]pyrene (BeP) were the main toxic isomers. Juvenile exposure to PAHs via oral ingestion (drinking) and dermal contact (showering) had negligible and potential health risks, respectively. Juveniles were the sensitive population for PAH exposure. 15 lakes were screened into the "List of PAH Priority Lakes" in three priority levels first priority (Level A), moderate priority (Level B) and general priority (Level C). Lake Taihu, Lake Chaohu and Lake Hongze were the extreme priority lakes. Optimizing the economic structures and reducing the combustion emissions in these areas should be implemented to reduce the population under potential health risk of PAHs. Informal e-waste recycling leads to a contamination of the workers with several hazardous substances, in particular heavy metals and persistent organic pollutants (POPs). Polychlorinated biphenyls (PCBs) belong to the group of POPs and are suspected to be associated with adverse health effects. In particular lower chlorinated PCBs, such as the congeners PCB 28 and PCB 52 are a marker of occupational exposure. The aim of our study was to assess the occupational PCB exposure in e-waste workers in relation to their specific recycling task (e.g. dismantling, burning). Altogether, n = 88 e-waste workers and n = 196 control subjects have been included in this study. All plasma participant's samples were evaluated for the PCB congeners PCB 28, 52, 101, 138, 153, 180 and sum of NDL-indicator congeners by human biomonitoring. A significant difference could be detected for the lower chlorinated PCB congeners (PCB 28, 52, and 101) for e-waste workers in comparison to the control group. Analyzing specific recycling tasks, workers who dismantle and those who burn e-waste showed the highest plasma levels of PCB 28 and 52. In conclusion, e-waste workers showed occupational related elevated PCB levels. Although those levels did not exceed the BAT value, workers were contaminated with PCBs during their task. Occupational health and safety measure are therefore necessary to protect the worker's health.