Adcockking6919
findings warrant the inclusion of binge-eating disorder and OSFED in future iterations of GBD, which will bring the burden experienced by people living with these disorders to the attention of policy makers with the means to target this burden.
Queensland Health, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.
Queensland Health, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.
To describe the experiences of weight stigma in prenatal clinical settings among high-risk pregnant women living with obesity and to obtain women's perspectives regarding changes to prenatal health care practices that may reduce weight stigma.
Qualitative descriptive study.
High-risk obstetrics clinic. Weight stigma experienced in prenatal clinical settings can negatively influence maternal health and well-being as well as communication with health care providers.
Nine pregnant women with obesity who were receiving specialized prenatal care in their third trimester.
Women participated in semistructured telephone interviews. Data were inductively analyzed using a content analysis, whereby coded data were organized to represent experiences of or suggestions provided by pregnant women to reduce weight stigma in prenatal clinical settings.
Experiences of weight stigma included poor communication, generalizations made about health and lifestyle behaviors, and focusing only on excess body weight during clinical appointments as the cause of negative health outcomes. To reduce weight stigma, women suggested that health care providers practice sensitive communication, offer individualized care for weight management, and reduce the focus on body weight by also independently addressing comorbidities or other health indicators.
Women interviewed for this study provided suggestions that can be implemented in prenatal clinical settings to reduce weight stigma and improve the delivery of equitable health care.
Women interviewed for this study provided suggestions that can be implemented in prenatal clinical settings to reduce weight stigma and improve the delivery of equitable health care.Disturbed neuronal activity in neuropsychiatric pathologies emerges during development and might cause multifold neuronal dysfunction by interfering with apoptosis, dendritic growth, and synapse formation. However, how altered electrical activity early in life affects neuronal function and behavior in adults is unknown. Here, we address this question by transiently increasing the coordinated activity of layer 2/3 pyramidal neurons in the medial prefrontal cortex of neonatal mice and monitoring long-term functional and behavioral consequences. We show that increased activity during early development causes premature maturation of pyramidal neurons and affects interneuronal density. Consequently, altered inhibitory feedback by fast-spiking interneurons and excitation/inhibition imbalance in prefrontal circuits of young adults result in weaker evoked synchronization of gamma frequency. These structural and functional changes ultimately lead to poorer mnemonic and social abilities. Thus, prefrontal activity during early development actively controls the cognitive performance of adults and might be critical for cognitive symptoms in neuropsychiatric diseases.Loss-of-function TREM2 mutations strongly increase Alzheimer's disease (AD) risk. Trem2 deletion has revealed protective Trem2 functions in preclinical models of β-amyloidosis, a prominent feature of pre-diagnosis AD stages. How TREM2 influences later AD stages characterized by tau-mediated neurodegeneration is unclear. To understand Trem2 function in the context of both β-amyloid and tau pathologies, we examined Trem2 deficiency in the pR5-183 mouse model expressing mutant tau alone or in TauPS2APP mice, in which β-amyloid pathology exacerbates tau pathology and neurodegeneration. Single-cell RNA sequencing in these models revealed robust disease-associated microglia (DAM) activation in TauPS2APP mice that was amyloid-dependent and Trem2-dependent. In the presence of β-amyloid pathology, Trem2 deletion further exacerbated tau accumulation and spreading and promoted brain atrophy. LDC203974 Without β-amyloid pathology, Trem2 deletion did not affect these processes. Therefore, TREM2 may slow AD progression and reduce tau-driven neurodegeneration by restricting the degree to which β-amyloid facilitates the spreading of pathogenic tau.Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.Each human genome includes de novo mutations that arose during gametogenesis. While these germline mutations represent a fundamental source of new genetic diversity, they can also create deleterious alleles that impact fitness. Whereas the rate and patterns of point mutations in the human germline are now well understood, far less is known about the frequency and features that impact de novo structural variants (dnSVs). We report a family-based study of germline mutations among 9,599 human genomes from 33 multigenerational CEPH-Utah families and 2,384 families from the Simons Foundation Autism Research Initiative. We find that de novo structural mutations detected by alignment-based, short-read WGS occur at an overall rate of at least 0.160 events per genome in unaffected individuals, and we observe a significantly higher rate (0.206 per genome) in ASD-affected individuals. In both probands and unaffected samples, nearly 73% of de novo structural mutations arose in paternal gametes, and we predict most de novo structural mutations to be caused by mutational mechanisms that do not require sequence homology.