Acostaflores8667

Z Iurium Wiki

Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ±0.12×1024Hzecm for Wd and 8.29 ± 0.12 kHz for Ws.Expanding the set of stable, accurate, and scalable methods for simulating molecular quantum dynamics is important for accelerating the computational exploration of molecular processes. In this paper, we adapt the signed particles Monte Carlo algorithm for solving the transient Wigner equation to scenarios of chemical interest. This approach was used in the past to study electronic processes in semi-conductors, but to the best of our knowledge, it had never been applied to molecular modeling. We present the algorithm and demonstrate its excellent performance on harmonic and double well potentials for electronic and nuclear systems. We explore the stability of the algorithm, discuss the choice of hyper-parameters, and cautiously speculate that it may be used in quantum molecular dynamics simulations.Escherichia coli adenylate kinase (AK) is composed of CORE domain and two branch domains LID and AMP-binding domain (AMPbd). AK exhibits considerable allostery in a reversible phosphoryl transfer reaction, which is largely attributed to the relative motion of LID and AMPbd with respect to CORE. Such an allosteric conformational change is also evident in the absence of ligands. Recent studies showed that the mutations in branch domains can adjust dynamic allostery and alter the substrate affinity and enzyme activity. In this work, we use all-atom molecular dynamics simulation to study the impacts of mutations in branch domains on AK's dynamic allostery by comparing two double mutants, i.e., LID mutant (Val135Gly, Val142Gly) and AMPbd mutant (Ala37Gly, Ala55Gly), with wild-type. Two mutants undergo considerable conformational fluctuation and exhibit deviation from the initially extended apo state to more compact structures. The LID domain in the LID mutant adjusts its relative position and firmly adheres to CORE. More strikingly, AMPbd mutations affect the relative positions of both the AMPbd domain and remote LID domain. Both domains undergo considerable movement, especially the inherent hinge swing motion of the flexible LID domain. In both mutants, the mutations can enhance the inter-domain interaction. The results about the conformation change of AK in both mutants are in line with the experiment of AK's affinity and activity. As revealed by our findings, the flexibility of branch domains and their inherent motions, especially LID domain, is highly relevant to dynamic allostery in the AK system.Benefitting from the capability of recording scalar (J) couplings and bonding information, 2D J-resolved NMR spectroscopy constitutes an important tool for molecular structure analysis and mixture component identification. Unfortunately, conventional 2D J-resolved experiments generally encounter challenges of insufficient spectral resolution and strong coupling artifacts. In this study, a general NMR approach is exploited to record absorption-mode artifact-free 2D J-resolved spectra. This proposal adopts the advanced triple-spin-echo pure shift yielded by chirp excitation element to eliminate J coupling splittings and preserve chemical shifts along the F2 dimension, and it additionally utilizes the echo-train J acquisition to reveal the multiplet structure along the F1 dimension in accelerated experimental acquisition. Thus, it permits one to extract multiplet structure information from crowded spectral regions in one-shot experiments, with considerable resolution advantage resulting from completely decoupling F2 dimension and absorption-mode presentation, thus facilitating analysis on complex samples. More importantly, this method grants the superior performance on suppressing strong coupling artifacts, which have been affirmed by experiments on a series of chemical samples. As a consequence, this proposed method serves as a useful tool for J coupling measurements and multiplet structure analyses on complex samples that contain crowded NMR resonances and strong coupling spin systems, and it may exhibit broad application potentials in fields of physics, chemistry, and medical science, among others.We have extended Slater's transition state concept for the approximation of the difference in total energies of the initial and final states by three orbital energies of initial, final, and half-way Slater's transition states of the system. Numerical validation was performed with the ionization energies for H2O, CO, and pyrrole by calculation using Hartree-Fock (HF) and Kohn-Sham (KS) theories with the B3LYP and LCgau-core-BOP functionals. The present extended method reproduces full ΔSCF very accurately for all occupied orbitals obtained with HF and for valence orbitals obtained with KS. KS core orbitals have some errors due to the self-interaction errors, but the present method significantly improves the core electron binding energies. In its current form, the newly derived theory may not yet be practically useful, but it is simple and conceptually useful for gaining improved understanding of SCF-type orbital theories.Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on Kohn-Sham orbitals, or SAPT0(KS), can be resurrected for semiquantitative purposes using long-range corrected density functionals whose asymptotic behavior is adjusted separately for each monomer. As in other contexts, correct asymptotic behavior can be enforced via "optimal tuning" based on the ionization energy theorem of density functional theory, but the tuning procedure is tedious, expensive for large systems, and comes with a troubling dependence on system size. Here, we show that essentially identical results are obtained using a fast, convenient, and automated tuning procedure based on the size of the exchange hole. In conjunction with "extended" (X)SAPT methods that improve the description of dispersion, this procedure achieves benchmark-quality interaction energies, along with the usual SAPT energy decomposition, without the hassle of system-specific tuning.Gold is the most inert metal and does not form a bulk hydride. However, gold becomes chemically active in the nanometer scale and gold nanoparticles have been found to exhibit important catalytic properties. Here, we report the synthesis and characterization of a highly stable ligand-protected gold hydride nanocluster, [Au22H3(dppee)7]3+ [dppee = bis(2-diphenylphosphino) ethyl ether]. A synthetic method is developed to obtain high purity samples of the gold trihydride nanocluster with good yields. The properties of the new hydride cluster are characterized with different experimental techniques, as well as theoretical calculations. Solid samples of [Au22H3(dppee)7]3+ are found to be stable under ambient conditions. Both experimental evidence and theoretical evidence suggest that the Au22H3 core of the [Au22H3(dppee)7]3+ hydride nanocluster consists of two Au11 units bonded via two triangular faces, creating six uncoordinated Au sites at the interface. The three H atoms bridge the six uncoordinated Au atoms at the interface. The Au11 unit behaves as an eight-electron trivalent superatom, forming a superatom triple bond (Au11 ≡ Au11) in the [Au22H3(dppee)7]3+ trihydride nanocluster assisted by the three bridging H atoms.A synchrotron-based vacuum ultraviolet (VUV) absorption spectrum of norbornadiene (NBD) is reported, and the extensive vibrational structure obtained has been analyzed. The previously known 5b13s-Rydberg state has been reinterpreted by comparison with our recent high-resolution photoelectron spectral analysis of the X2B1 ionic state. Additional vibrational details in the region of this Rydberg state are observed in its VUV spectrum when compared with the photoelectron 2B1 ionic state; this is attributed to the underlying valence state structure in the VUV. Valence and Rydberg state energies have been obtained by configuration interaction and time-dependent density functional theoretical methods. Several low-lying singlet valence states, especially those that arise from ππ* excitations, conventionally termed NV1 to NV4, have been examined in detail. Their Franck-Condon (FC) and Herzberg-Teller (HT) profiles have been investigated and fitted to the VUV spectrum. Estimates of the experimental 00 band positions have been made from these fits. The anomaly of the observed UV absorption by the 1A2 state of NBD is attributed to HT effects. Generally, the HT components are less than 10% of the FC terms. The calculated 5b13s lowest Rydberg state also shows a low level of HT components. The observed electron impact spectra of NBD have been analyzed in detail in terms of triplet states.Macromolecular crowding is a feature of cellular and cell-free systems that, through depletion effects, can impact the interactions of semiflexible biopolymers with surfaces. In this work, we use computer simulations to study crowding-induced adsorption of semiflexible polymers on otherwise repulsive surfaces. Crowding particles are modeled explicitly, and we investigate the interplay between the bending stiffness of the polymer and the volume fraction and size of crowding particles. Adsorption to flat surfaces is promoted by stiffer polymers, smaller crowding particles, and larger volume fractions of crowders. We characterize transitions from non-adsorbed to partially and strongly adsorbed states as a function of bending stiffness. The crowding-induced transitions occur at smaller values of the bending stiffness as the volume fraction of crowders increases. Concomitant effects on the size and shape of the polymer are reflected by crowding- and stiffness-dependent changes to the radius of gyration. For various polymer lengths, we identify a critical crowding fraction for adsorption and analyze its scaling behavior in terms of polymer stiffness. We also consider crowding-induced adsorption in spherical confinement and identify a regime in which increasing the bending stiffness induces desorption. this website The results of our simulations shed light on the interplay of crowding and bending stiffness on the spatial organization of biopolymers in encapsulated cellular and cell-free systems.The templated assembly of nanoparticles has been limited so far to yield only discontinuous nanoparticle clusters confined within lithographically patterned cavities. Here, we explored the templated assembly of nanoparticles into continuous 2D structures, using lithographically patterned templates with topographical features sized as the assembled nanoparticles. We found that these features act as nucleation centers, whose exact arrangement determines four possible assembly regimes (i) rotated, (ii) disordered, (iii) closely packed, and (iv) unpacked. These regimes produce structures strikingly different from their geometry, orientation, long-range and short-range orders, and packing density. Interestingly, for templates with relatively distant nucleation centers, these four regimes are replaced with three new ones, which produce large monocrystalline domains that are either (i) uniformly rotated, (ii) uniformly aligned, or (iii) nonuniformly rotated relative to the nucleation lattice. We rationalized our experimental data using a mathematical model, which examines all the alignment possibilities between the nucleation centers and the ideal hexagonal assembly.

Autoři článku: Acostaflores8667 (Wells Greene)