Abramsmcclure1964

Z Iurium Wiki

When QPCFs were applied to the solution obtained by bioleaching of e-waste, the recovery efficiencies of Au and Cu were 61.7 ± 3.1% and 11.1 ± 2.9%, respectively, indicating that QPCFs have Au selectivity. Therefore, QPCFs are suitable for actual wastewater applications because of their high adsorption performance and fast adsorption rate.With increased industrial development, vast heavy metals are inevitably discharged into wastewater. Cu2+ is one of the most hazardous heavy metals in biotreatment. However, the potential effect of Cu2+ on denitrifying granular sludge is still unknown. This work assesses the response of denitrifying granular sludge to Cu2+ stress from multiple aspects. The denitrifying granular sludge could tolerate 5 mg L-1 Cu2+, while the nitrogen removal efficiency decreased to 48.5% under 10 mg L-1 Cu2+. Enzyme activity and carbohydrate metabolism were inhibited, and the denitrifying bacteria were washed out under Cu2+ stress. The resulting deteriorated state was reversed by phosphate. The nitrogen removal efficiency recovered to 99% after 10 days, and the enzyme activity also recovered to the original level. Membrane transport, transcription and cellular processes were promoted. Overall, the results of this work provide a feasible strategy to rapidly restore the metabolic activity of denitrifying granular sludge under Cu2+ stress.Micropollutants can be removed in Biological Activated Carbon (BAC) filters through biodegradation, besides adsorption, when the conditions are favorable. In the present study, we build upon previous work on melamine biodegradation and activated carbon regeneration in batch experiments and assess the efficiency of this process in continuous flow lab-scale BAC filters. Melamine is frequently detected at low concentrations in surface water and is used here as a model micropollutant. BAC filters were inoculated with melamine degrading biomass and the contribution of biodegradation to melamine removal was assessed. Furthermore, we tested the effect of an additional carbon source (methanol) and the effect of contact time on melamine removal efficiency. We demonstrate that inoculation of activated carbon filters with melamine degrading biomass increases melamine removal efficiency by at least 25%. When an additional carbon source (methanol) is supplied, melamine removal is almost complete (up to 99%). Finally, through a nitrogen mass balance, we demonstrate that around 60% of the previously adsorbed melamine desorbs from the BAC surface when biodegradation rates in the liquid phase increase. Melamine desorption resulted in a partial recovery of the adsorption capacity.As the most abundant congener of polybrominated diphenyl ethers (PBDEs) detected in environment and human biotic samples, 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to accumulate in brain and induce neurotoxicity, however, the detailed mechanism has not been clearly elucidated. To investigate the neurotoxicity of BDE-47, undifferentiated PC-12 cells were exposed to different doses of BDE-47, and BDE-47 dissolved in corn oil was orally administered to mice for 8 consecutive weeks. Our data showed that BDE-47 obviously changed cell morphology, altered cell viability, promoted cell apoptosis, and induced reactive oxygen species (ROS) production. BDE-47 promoted the differentiation of PC-12 cells by enhancing the expression of TrkA receptor and the phosphorylation levels of ERK and Akt. Moreover, BDE-47-induced differentiation of PC-12 cells was suppressed by inhibitors of corresponding pathways (MAPK/ERK and PI3K/Akt). H&E staining of brain showed neurons in DG and CA1 areas of hippocampus decreased after BDE-47 exposure. Transcriptome sequencing of brain tissue suggested that multiple signaling pathways related to neuron death and nerve function were significantly regulated. In conclusion, these results provided new evidence for revealing the neurotoxicity of BDE-47, and offered important experimental basis for environmental controlling and post-exposure health risk assessment of BDE-47.Nowadays, a growing number of microplastics are released into the environment due to the extensive use and inappropriate management of plastic products. With the increasing body of evidence about the pollution and hazards of microplastics, microplastics have drawn major attention from governments and the scientific community. As a kind of emerging and persistent environmental pollutants, microplastics have recently been detected on a variety of substrates in the world. Therefore, this paper reviews the recent progress in identifying the sources of microplastics in soil, water, and atmosphere and describing the transport and fate of microplastics in the terrestrial, aquatic and atmospheric ecosystems for revealing the circulation of microplastics in the ecosystem. In addition, considering the persistence of microplastics, this study elucidates the interactions of microplastics with other pollutants in the environment (i.e., organic pollutants, heavy metals) with emphasis on toxicity and accumulation, providing a novel insight into the ecological risks of microplastics in the environment. The negative impacts of microplastics on organisms and environmental health are also reviewed to reveal the environmental hazards of microplastics. The knowledge gaps and key research priorities of microplastics are identified to better understand and mitigate the environmental risks of microplastics.Toxicological effects of nanoplastics have been demonstrated in a variety of organisms, yet their impacts on bacteria, especially on the antibiotic resistance evolution remain under explored. Herein, we report individual and combined effects of nano-polystyrene (nano-PS) and erythromycin (ERY) on growth and resistance mutations of Escherichia coli. The toxicity of nano-PS was dependent on size and functional modifications, with 30 nm and amino-modified PS (PS-NH2, 200 nm) showing the greatest toxicity. Adsorption of nano-PS onto bacterial surface and the subsequent increase of intracellular ROS or the probable mechanical damage were considered as the primary toxic mechanisms. Furthermore, nano-PS increased the bacterial resistance mutations, which was due to the oxidative damage to DNA and the SOS response. In addition, PS-NH2 presented synergistic effects with ERY while non-modified PS had no impact, although both of them showed adsorption capacity to ERY. This was likely because the positively charged PS-NH2 acted as a carrier of ERY and enhanced the interactions between ERY and the bacteria. Our findings raised the concerns about the risk of nanoplastics in accelerating the bacterial resistance evolution, and highlighted the necessity of including combined effects of nanoplastics and co-contaminants in risk assessment.Elevated selenium levels in the environment, with soluble selenate [Se(VI)] as the common chemical species, pose a severe threat to human health. Anaerobic Se(VI) bioreduction is a promising approach for selenium detoxification, and various organic/inorganic electron donors have proved effective in supporting this bioprocess. Nevertheless, autotrophic Se(VI) bioreduction driven by solid inorganic electron donors is still not fully understood. Selleck A-1155463 This work is the first to employ elemental sulfur [S(0)] as electron donor to support Se(VI) bioreduction. A batch trial with mixed culture demonstrated the feasibility of this bioprocess, with Se(VI) removal efficiency of 92.4 ± 0.7% at an initial Se(VI) concentration of 10 mg/L within 36 h. Continuous column tests showed that increased initial concentration, flow rate, and introduction of NO3--N depressed Se(VI) removal. Se(VI) was mainly bioreduced to solid elemental Se with trace selenite in the effluent, while S(0) was oxidized to SO42-. Enrichment of Thiobacillus, Desulfurivibrio, and Sulfuricurvum combined with upregulation of genes serA, tatC, and soxB indicated Se(VI) bioreduction was coupled to S(0) oxidation. Thiobacillus performed S(0) oxidation and Se(VI) reduction independently. Intermediate metabolites as volatile fatty acids, hydrogen and methane from S(0) oxidation were utilized by heterotrophic Se(VI) reducers for Se(VI) detoxification, indicative of microbial synergy.Removal of antimony from wastewater is essential because of its potential harm to the environment and human health. Nano-silica and biogenic iron (oxyhydr)oxides composites (BS-Fe) were prepared by iron oxidizing bacteria (IOB) mediation and the batch adsorption experiments were applied to investigate antimonite (Sb(III)) and antimonate (Sb(V)) removal behaviors. By contrast, the synthetic BS-Fe calcined at 400 ℃ (BS-Fe-400) exhibited a large specific surface area (157.353 m2/g). The maximum adsorption capacities of BS-Fe-400 were 102.10 and 337.31 mg/g for Sb(III) and Sb(V), respectively, and experimental data fit well to the Langmuir isotherm and Temkin models, and followed the pseudo-second order kinetic model. Additionally, increasing pH promoted Sb(III) adsorption, while inhibited the adsorption of Sb(V), indicating that electrostatic attraction made a contribution to Sb(V) adsorption. Moreover, different co-existing ions showed different effects on adsorption. Characterization techniques of FTIR and XPS indicated that the main functional groups involved in the adsorption were -OH, C-O, CO, C-C, etc. and Sb(III) and Sb(V) may bind to iron (oxyhydr)oxides via the formation of inner-sphere complexes. The present work revealed that the synthetic BS-Fe-400 by nano-silica and biogenic iron (oxyhydr)oxides held great application potential in antimony removal from wastewater.Biochar has been increasingly used as a filter medium in engineered low impact development systems (e.g., bioretention systems) for decontamination of urban stormwater and management of hydrology. This review paper critically analyzes the performance of biochar-based biofiltration systems for removal of chemical and microbial pollutants present in urban runoff. Biochar-amended biofiltration systems efficiently remove diverse pollutants such as total nitrogen (32 - 61%), total phosphorus (45 - 94%), heavy metals (27 - 100%), organics (54 - 100%) and microbial pollutants (log10 removal 0.78 - 4.23) from urban runoff. The variation of biofiltration performance is due to changes in biochar characteristics, the abundance of dissolved organic matter and/or stormwater chemistry. The dominant mechanisms responsible for removal of chemical pollutants are sorption, ion exchange and/or biotransformation, whereas filtration/straining is the major mechanism for bacteria removal. The pseudo-second order and Langmuir isotherm are the best models that describe the kinetics and chemical equilibrium of pollutants, respectively. This critical review provides the fundamental scientific knowledge for designing highly efficient biochar-based bioretention systems for removal of diverse pollutants from urban stormwater. The key knowledge gaps that should be addressed in future research include long-term field-scale bioretention study, development of novel methods for filter media regeneration/reuse, and dynamics of filter media microbial communities.Increasing cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health via food chains. The Cd toxicity could be mitigated by improving Fe nutrient in plants. IMA1 and IMA3, two novel small peptides functionally epistatic to the key transcription factor bHLH39 but independent of bHLH104, were recently identified as the newest additions to the Fe regulatory cascade, but their roles in Cd uptake and toxicity remain not addressed. Here, the functions of two IMAs and two transcription factors related to Cd tolerance were verified. Overexpression of either bHLH39 or bHLH104 in Arabidopsis showed weak roles in Cd tolerance, but overexpression of IMAs, which activates the Fe-deficient response, significantly enhanced Cd tolerance, showing greater root elongation, biomass and chlorophyll contents. The Cd contents did not show significant difference among the overexpression lines. Further investigations revealed that the tolerance of transgenic plants to Cd mainly depended on higher Fe accumulation, which decreased the MDA contents and enhanced root elongation under Cd exposure, finally contributing to attenuating Cd toxicity.

Autoři článku: Abramsmcclure1964 (Hart Mckee)