Abrahamsenyang8387
The phenomenon of drag reduction (known as the "Toms effect") has many industrial and engineering applications, but a definitive molecular-level theory has not yet been constructed. This is due both to the multiscale nature of complex fluids and to the difficulty of directly observing self-assembled structures in nonequilibrium states. On the basis of a large-scale coarse-grained molecular simulation that we conducted, we propose a possible mechanism of turbulence suppression in surfactant aqueous solution. We demonstrate that maintaining sufficiently large micellar structures and a homogeneous radial distribution of surfactant molecules is necessary to obtain the drag-reduction effect. This is the first molecular-simulation evidence that a micellar structure is responsible for drag reduction in pipe flow, and should help in understanding the mechanisms underlying drag reduction by surfactant molecules under nonequilibrium conditions.Betaine aldehyde dehydrogenase 1 (BADH1), a paralog of the fragrance gene BADH2, is known to be associated with salt stress through the accumulation of synthesized glycine betaine (GB), which is involved in the response to abiotic stresses. Despite the unclear association between BADH1 and salt stress, we observed the responses of eight phenotypic characteristics (germination percentage (GP), germination energy (GE), germination index (GI), mean germination time (MGT), germination rate (GR), shoot length (SL), root length (RL), and total dry weight (TDW)) to salt stress during the germination stage of 475 rice accessions to investigate their association with BADH1 haplotypes. We found a total of 116 SNPs and 77 InDels in the whole BADH1 gene region, representing 39 haplotypes. Twenty-nine haplotypes representing 27 mutated alleles (two InDels and 25 SNPs) were highly (p less then 0.05) associated with salt stress, including the five SNPs that have been previously reported to be associated with salt tolerance. We observed three predominant haplotypes associated with salt tolerance, Hap_2, Hap_18, and Hap_23, which were Indica specific, indicating a comparatively high number of rice accessions among the associated haplotypes. selleckchem Eight plant parameters (phenotypes) also showed clear responses to salt stress, and except for MGT (mean germination time), all were positively correlated with each other. Different signatures of domestication for BADH1 were detected in cultivated rice by identifying the highest and lowest Tajima's D values of two major cultivated ecotypes (Temperate Japonica and Indica). Our findings on these significant associations and BADH1 evolution to plant traits can be useful for future research development related to its gene expression.A heterogeneous genetic subtype of B-cell precursor acute lymphoblastic leukemia is driven by constitutive kinase-activation, including patients with JAK2 fusions. In our study, we model the impact of a novel JAK2 fusion protein on hematopoietic development in human induced pluripotent stem cells (hiPSCs). We insert the RUNX1-JAK2 fusion into one endogenous RUNX1 allele through employing in trans paired nicking genome editing. Tagging of the fusion with a degron facilitates protein depletion using the heterobifunctional compound dTAG-13. Throughout in vitro hematopoietic differentiation, the expression of RUNX1-JAK2 is driven by endogenous RUNX1 regulatory elements at physiological levels. Functional analysis reveals that RUNX1-JAK2 knock-in cell lines yield fewer hematopoietic progenitors, due to RUNX1 haploinsufficiency. Nevertheless, these progenitors further differentiate toward myeloid lineages to a similar extent as wild-type cells. The expression of the RUNX1-JAK2 fusion protein only elicits subtle effects on myeloid differentiation, and is unable to transform early hematopoietic progenitors. However, phosphoprotein and transcriptome analyses reveal that RUNX1-JAK2 constitutively activates JAK-STAT signaling in differentiating hiPSCs and at the same time upregulates MYC targets-confirming the interaction between these pathways. This proof-of-principle study indicates that conditional expression of oncogenic fusion proteins in combination with hematopoietic differentiation of hiPSCs may be applicable to leukemia-relevant disease modeling.The present study aimed to develop a technology for the production of dietary supplements based on yeast biomass and α-ketoglutaric acid (KGA), produced by a new transformant of Yarrowia lipolytica with improved KGA biosynthesis ability, as well to verify the usefulness of the obtained products for food and feed purposes. Transformants of Y. lipolytica were constructed to overexpress genes encoding glycerol kinase, methylcitrate synthase and mitochondrial organic acid transporter. The strains were compared in terms of growth ability in glycerol- and oil-based media as well as their suitability for KGA biosynthesis in mixed glycerol-oil medium. The impact of different CNP ratios on KGA production by selected strain was also evaluated. Application of the strain that overexpressed all three genes in the culture with a CNP ratio of 8751 allowed us to obtain 53.1 g/L of KGA with productivity of 0.35 g/Lh and yield of 0.53 g/g. Finally, the possibility of obtaining three different products with desired nutritional and health-beneficial characteristics was demonstrated (1) calcium α-ketoglutarate (CaKGA) with purity of 89.9% obtained by precipitation of KGA with CaCO3, (2) yeast biomass with very good nutritional properties, (3) fixed biomass-CaKGA preparation containing 87.2 μg/g of kynurenic acid, which increases the health-promoting value of the product.Transforming growth factor-β (TGF-β) signaling triggers diverse biological actions in inflammatory diseases. In tissue fibrosis, it acts as a key pathogenic regulator for promoting immunoregulation via controlling the activation, proliferation, and apoptosis of immunocytes. In cancer, it plays a critical role in tumor microenvironment (TME) for accelerating invasion, metastasis, angiogenesis, and immunosuppression. Increasing evidence suggest a pleiotropic nature of TGF-β signaling as a critical pathway for generating fibrotic TME, which contains numerous cancer-associated fibroblasts (CAFs), extracellular matrix proteins, and remodeling enzymes. Its pathogenic roles and working mechanisms in tumorigenesis are still largely unclear. Importantly, recent studies successfully demonstrated the clinical implications of fibrotic TME in cancer. This review systematically summarized the latest updates and discoveries of TGF-β signaling in the fibrotic TME.