Abildtrupsmart9299
A generalized linear mixed effect model (GLM) was applied considering type of respirator and time as fixed effects and intercept as random effect. No significant statistical differences were present in the BFE of each time. Data obtained by the present study highlight the important ability of FFP2s to maintain their BFE over time, suggesting a long lasting protective function.Cannabis sativa L. is an herbaceous plant belonging to the family of Cannabaceae. It is classified into three different chemotypes based on the different cannabinoids profile. In particular, fiber-type cannabis (hemp) is rich in cannabidiol (CBD) content. In the present work, a rapid nano liquid chromatographic method (nano-LC) was proposed for the determination of the main cannabinoids in Cannabis sativa L. (hemp) inflorescences belonging to different varieties. The nano-LC experiments were carried out in a 100 µm internal diameter capillary column packed with a C18 stationary phase for 15 cm with a mobile phase composed of ACN/H2O/formic acid, 80/19/1% (v/v/v). The reverse-phase nano-LC method allowed the complete separation of four standard cannabinoids in less than 12 min under isocratic elution mode. The nano-LC method coupled to ultraviolet (UV) detection was validated and applied to the quantification of the target analytes in cannabis extracts. The nano-LC system was also coupled to an electrospray ionization-mass spectrometry (ESI-MS) detector to confirm the identity of the cannabinoids present in hemp samples. For the extraction of the cannabinoids, three different approaches, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), and an extraction procedure adapted from the French Pharmacopeia's protocol on medicinal plants, were carried out, and the results achieved were compared.Hyacinthus orientalis L. (family Hyacinthaceae) is traditionally used to treat different diseases including cancer. In this study, the anticancer and immunomodulatory effects of this plant were evaluated. Hydroalcoholic extract was prepared, and different solvent fractions were obtained using solvent-solvent extraction. In the anticancer part, MTT assay and caspase-3 ELISA kits were used to measure the antiproliferative and apoptosis induction ability for each extract, respectively. In the immunomodulatory part, lymphocyte proliferation assay and cytokines detection kit were used to measure the effect of extracts of acquired immunity. Phagocytosis and pinocytosis induction were used to evaluate the effect of extracts on the innate immunity. GC-MS, LC-MS, and Foline-Ciocalteu assays were used to identify the chemical composition of the plant. Balb/C mice were inoculated with breast cancer and treated with hydroalcoholic extract of H. orientalis L. Results showed that hydroalcoholic extract and n-hexane fraction were highly effective in apoptosis induction. Both extract and fraction were also effective in stimulating lymphocytes proliferation and phagocytosis. Significant reduction in tumor size was achieved after treating tumor-bearing mice with hydroalcoholic extract. Additionally, high cure percentages (50%) were obtained in treated mice. Results of this study showed that H. orientalis L. has promising anticancer and immunomodulatory activities. However, further studies are needed to explore more details of apoptosis induction ability and other mechanisms of action and to measure different signaling pathways responsible for the anticancer and immunomodulatory response.There is a huge need to search for new treatment options and potential biomarkers of therapeutic response to antidepressant treatment. Depression and metabolic syndrome often coexist, while a pathophysiological overlap, including microbiota changes, may play a role. The paper presents a study protocol that aims to assess the effect of probiotic supplementation on symptoms of depression, anxiety and stress, metabolic parameters, inflammatory and oxidative stress markers, as well as fecal microbiota in adult patients with depressive disorders depending on the co-occurrence of metabolic syndrome. The trial will be a four-arm, parallel-group, prospective, randomized, double-blind, controlled design that will include 200 participants and will last 20 weeks (ClinicalTrials.gov identifier NCT04756544). The probiotic preparation will contain Lactobacillus helveticus Rosell®-52, Bifidobacterium longum Rosell®-175. We will assess the level of depression, anxiety and stress, quality of life, blood pressure, body mass index and waist circumference, white blood cells count, serum levels of C-reactive protein, high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose, fecal microbiota composition and the level of some fecal microbiota metabolites, as well as serum inflammatory markers and oxidative stress parameters. The proposed trial may establish a safe and easy-to-use adjunctive treatment option in a subpopulation of depressive patients only partially responsive to pharmacologic therapy.Fluid fine tailings are produced in huge quantities by Canada's mined oil sands industry. Due to the high colloidal stability of the contained fine solids, settling of fluid fine tailings can take hundreds of years, making the entrapped water unavailable and posing challenges to public health and the environment. This study focuses on developing value-added aggregation agents from specified risk materials (SRM), a waste protein stream from slaughterhouse industries, to achieve an improved separation of fluid fine tailings into free water and solids. Settling results using synthetic kaolinite slurries demonstrated that, though not as effective as hydrolyzed polyacrylamide, a commercial flocculant, the use of SRM-derived peptides enabled a 2-3-fold faster initial settling rate than the blank control. The pH of synthetic kaolinite tailings was observed to be slightly reduced with increasing peptides dosage in the test range (10-50 kg/ton). The experiments on diluted fluid fine tailings (as a representation of real oil sands tailings) demonstrated an optimum peptides dosage of 14 kg/ton, which resulted in a 4-fold faster initial settling rate compared to the untreated tailings. Overall, this study demonstrates the novelty and feasibility of using SRM-peptides to address intractable oil sands fluid tailings.Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with diffeluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined.In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.Highly porous activated carbons were synthesized via the mechanochemical salt-templating method using both sustainable precursors and sustainable chemical activators. Tannic acid is a polyphenolic compound derived from biomass, which, together with urea, can serve as a low-cost, environmentally friendly precursor for the preparation of efficient N-doped carbons. The use of various organic and inorganic salts as activating agents afforded carbons with diverse structural and physicochemical characteristics, e.g., their specific surface areas ranged from 1190 m2·g-1 to 3060 m2·g-1. Coupling the salt-templating method and chemical activation with potassium oxalate appeared to be an efficient strategy for the synthesis of a highly porous carbon with a specific surface area of 3060 m2·g-1, a large total pore volume of 3.07 cm3·g-1 and high H2 and CO2 adsorption capacities of 13.2 mmol·g-1 at -196 °C and 4.7 mmol·g-1 at 0 °C, respectively. The most microporous carbon from the series exhibited a CO2 uptake capacity as high as 6.4 mmol·g-1 at 1 bar and 0 °C. Moreover, these samples showed exceptionally high thermal stability. https://www.selleckchem.com/products/nvp-tae226.html Such activated carbons obtained from readily available sustainable precursors and activators are attractive for several applications in adsorption and catalysis.Heterochromatic regions render the replication process particularly difficult due to the high level of chromatin compaction and the presence of repeated DNA sequences. In humans, replication through pericentromeric heterochromatin requires the binding of a complex formed by the telomeric factor TRF2 and the helicase RTEL1 in order to relieve topological barriers blocking fork progression. Since TRF2 is known to bind the Origin Replication Complex (ORC), we hypothesized that this factor could also play a role at the replication origins (ORI) of these heterochromatin regions. By performing DNA combing analysis, we found that the ORI density is higher within pericentromeric satellite DNA repeats than within bulk genomic DNA and decreased upon TRF2 downregulation. Moreover, we showed that TRF2 and ORC2 interact in pericentromeric DNA, providing a mechanism by which TRF2 is involved in ORI activity. Altogether, our findings reveal an essential role for TRF2 in pericentromeric heterochromatin replication by regulating both replication initiation and elongation.Naegleria fowleri is a free-living amoeba that is ubiquitous in diverse natural environments. It causes a fatal brain infection in humans known as primary amoebic meningoencephalitis. Despite the medical importance of the parasitic disease, there is a great lack of knowledge about the biology and pathogenicity of N. fowleri. In this study, we identified and characterized a novel cysteine protease inhibitor of N. fowleri (NfCPI). NfCPI is a typical cysteine protease inhibitor belonging to the cystatin family with a Gln-Val-Val-Ala-Gly (QVVAG) motif, a characteristic motif conserved in the cystatin family of proteins. Bacterially expressed recombinant NfCPI has a dimeric structure and exhibits inhibitory activity against several cysteine proteases including cathespin Bs of N. fowleri at a broad range of pH values. Expression profiles of nfcpi revealed that the gene was highly expressed during encystation and cyst of the amoeba. Western blot and immunofluorescence assays also support its high level of expression in cysts.