Abildgaardferguson7692

Z Iurium Wiki

We design planar silicon antennas for controlling the emission rate of magnetic or electric dipolar emitters. Evolutionary algorithms coupled to the Green Dyadic Method lead to different optimized geometries which depend on the nature and orientation of the dipoles. Selleckchem CDK2-IN-73 We discuss the physical origin of the obtained configurations thanks to modal analysis but also emphasize the role of nanoscale design of the LDOS. We complete our study using finite element method and demonstrate an enhancement up to 2 × 103 of the magnetic Purcell factor in europium ions. Our work brings together random optimizations to explore geometric parameters without constraint, a first order deterministic approach to understand the optimized designs and a modal analysis which clarifies the physical origin of the exaltation of the magnetic Purcell effect.We propose an adaptive multi-layer (ML) filter architecture to compensate for linear impairments that occur in transmitter (Tx) and receiver (Rx) components in ultra-long-haul optical fiber transmission systems, in which large chromatic dispersion (CD) accumulates in the received signal. The architecture consists of strictly linear (SL) and widely linear (WL) filter layers, and the coefficients of the ML filters are adaptively controlled by gradient calculation with back propagation and stochastic gradient descent. Static CD compensation is performed on the received signal and its complex conjugate before the adaptive ML filters. These augmented signals are then the inputs of the first 2×1 SL filter layer of the ML filters, for compensation of in-phase (I) and quadrature (Q) impairments on the Rx side. Tx IQ impairments and polarization effects as well as Rx IQ impairments are adaptively compensated in the ML filters. By sweeping CD compensation filters before the ML filters, this architecture mitigates the computational complexity for back propagation of the ML filters especially for ultra-long-haul transmission, while mutual non-commutativity between the WL filter for IQ impairment compensation and the CD compensation filter is appropriately solved. We evaluated the proposed adaptive ML filter architecture with augmented inputs through both simulation and wavelength-division multiplexed transmission experiments of 32-Gbaud polarization-division-multiplexed 64-quadrature amplitude modulation-based probabilistic constellation shaped signals over 10,000 km of single-mode fiber (SMF). The results demonstrated that the proposed adaptive ML filter architecture effectively compensates for Tx and Rx IQ skews in ultra-long-haul SMF transmission, and that impairments can be monitored individually from the converged filter coefficients of the corresponding layers.Over the past decade, the research field of Fourier Ptychographic Microscopy (FPM) has seen numerous innovative developments that significantly expands its utility. Here, we report a high numerical aperture (NA) FPM implementation that incorporates some of these innovations to achieve a synthetic NA of 1.9 - close to the maximum possible synthetic NA of 2 for a free space FPM system. At this high synthetic NA, we experimentally found that it is vital to homogenize the illumination field in order to achieve the best resolution. Our FPM implementation has a full pitch resolution of 266 nm for 465 nm light, and depth of field of 3.6 µm. In comparison, a standard transmission microscope (incoherent) with close to maximum possible NA of 0.95 has a full pitch resolution of 318 nm for 465 nm light, and depth of field of 0.65 µm. While it is generally assumed that a free-space coherent imaging system and a free-space incoherent imaging system operating at their respective maximum NA should give comparable resolution, we experimentally find that an FPM system significantly outperforms its incoherent standard microscopy counterpart in resolution by a factor of 20%. Coupled with FPM's substantially longer effective depth of field (5.5 times longer), our work indicates that, in the near-maximum NA operation regime, the FPM has significant resolution and depth of field advantages over incoherent standard microscopy.The stability of the phase difference between two white-light continua, generated from the same 180-fs pulses at ≃1035 nm, is assessed by a modified Bellini-Hänsch interferometer. Mutual spectral phase stability is studied and quantified as a function of several parameters pulse energy, position of the nonlinear crystal with respect to the beam waist and interaction length. Our results show that intrapulse decoherence may significantly contribute to the measured CEP noise floor. In addition, spectrally-resolved intensity-to-phase coupling coefficients are measured and stability regions are identified.A single metasurface-based device possessing multiple functionalities is highly desirable for terahertz technology system. In this paper, we design a reflective metasurface to generate switchable vortex beams carrying orbital angular momentum (OAM), focusing beams, focusing beams with arbitrary positions, and vortex beams with arbitrary topological charges in the terahertz region. By combining the spin decoupling principle and the phase addition theorem, the superposition states of OAM and focusing beams with arbitrary positions can be independent manipulated under right-handed and left-handed circularly polarized (LCP/RCP) waves illumination. Such a diversified functionalities device provides a promising application in the field of terahertz communication and terahertz super-resolution imaging.We demonstrate chalcogenide optical fiber couplers with a power-dependent coupling coefficient. The couplers are designed and fabricated using an As2Se3 fiber and characterized at a wavelength of 1938 nm, leading to a critical power of 126 W, the lowest ever reported for any optical fiber coupler. These nonlinear couplers enable all-optical switching and will be useful for passive mode-locking over a wide wavelength range from the telecommunication band to the mid-infrared.In this paper, we propose a novel beam shaping technique based on orbital angular momentum (OAM) modes for indoor optical wireless communications (OWC). Furthermore, we investigate two spatial diversity techniques, namely repetition-coding (RC) and Alamouti-type orthogonal space-time-block-coding (STBC) for indoor OWC employing the new beam shaping technique. The performance of both diversity schemes is systematically analyzed and compared under different beam shaping techniques using different OAM modes with different power ratios of the modes. It is shown that both RC and STBC can improve the system performance and effective coverage and RC outperforms STBC in all the beam shaping techniques regardless of the power ratios of the different modes. In addition, to further understand the performance of RC and STBC schemes against the signal delays induced during OAM mode conversion, the system tolerance of the two schemes to the delay interval is investigated with different OAM mode-based beam shaping techniques. Numerical results show that higher resistance to the delay interval can be achieved in STBC scheme. The advantage is more obvious when employing OAM0 and OAM1 based beam shaping technique.In rolling shutter (RS)-based optical camera communication (OCC) links, selecting the appropriate camera's exposure time is critical, as it limits the reception bandwidth. In long exposures, the pixels accumulate over time the incoming irradiance of several consecutive symbols. As a result, a harmful intersymbol interference corrupts the received signal. Consequently, reducing the exposure time is required to increase the reception bandwidth at the cost of producing dark images with impracticable light conditions for human or machine-supervised applications. Alternatively, deep learning (DL) equalizers can be trained to mitigate the exposure-related ISI. These equalizers must be trained considering the transmitter clock and the camera's exposure, which can be exceptionally challenging if those parameters are unknown in advance (e.g., if the camera does not reveal its internal settings). In those cases, the receiver must estimate those parameters directly from the images, which are severely distorted by the exposure time. This work proposes a DL estimator for this purpose, which is trained using synthetic images generated for thousands of representative cases. This estimator enables the receiver operation under multiple possible configurations, regardless of the camera used. The results obtained during the validation, using more than 7000 real images, registered relative errors lower than 1% and 2% when estimating the transmitter clock and the exposure time, respectively. The obtained errors guarantee the optimal performance of the following equalization and decoding receiver stages, keeping bit error rates below the forward error correction limit. This estimator is a central component of any OCC receiver that operates over moderate exposure conditions. It decouples the reception routines from the cameras used, ultimately enabling cloud-based receiver architectures.The two-dimensional/three-dimensional van der Waals heterostructures provide novel optoelectronic properties for the next-generation of information devices. Herein, MoS2/Ge heterojunction avalanche photodetectors are readily obtained. The device with an Ag electrode at MoS2 side exhibits more stable rectification characteristics than that with an Au electrode. The rectification radio greater than 103 and a significant avalanche breakdown are observed in the device. The responsivity of 170 and 4 A/W and the maximum gain of 320 and 13 are obtained under 532 and 1550 nm illumination, respectively. Such photoelectric properties are attributed to the carrier multiplication at a Ge/MoS2 junction due to an avalanche breakdown. The mechanism is confirmed by the Sentaurus TCAD-simulated I-V characteristics.The large-scale and continuous production of CsPbBr3@PMMA composite film is realized by the in-situ ultrasonic spray coating method at room temperature. Through embedding CsPbBr3 nanocrystals into the hydrophobic polymer framework, the as-fabricated films (20 cm × 20 cm) exhibit uniform green emissions with a relatively high PLQYs of 76%, and could maintain 80% PL intensity after 3 months storage under ambient conditions. Assembling the green-emissive CsPbBr3@PMMA film and the red-emissive KSF@PMMA film with blue LED chip, a high-performance LCD is obtained, reaching a higher saturation with 126% and 94% color gamut of NTSC and Rec.2020, respectively. This work demonstrates that ultrasonic spray coating technique could be widely used in the large-scale fabrication of uniformly high-quality perovskite films for backlight application.In this work, we determine the temperature dependence of refractive indices of In0.53Al0.1Ga0.37As and Al0.9Ga0.1As semiconductor alloys at telecommunication wavelengths in the range from room temperature down to 10 K. For that, we measure the temperature-dependent reflectance of two structures with an Al0.9Ga0.1As/GaAs distributed Bragg reflector (DBR) designed for 1.3 µm and with an In0.53Al0.1Ga0.37As/InP DBR designed for 1.55 µm. The obtained experimental results are compared to DBR reflectivity spectra calculated within the transfer matrix method to determine refractive index values. We further show that changes due to the thermal expansion of the DBR layers are negligible for our method.

Autoři článku: Abildgaardferguson7692 (Sanchez Hartley)