Abernathydyhr0695
This study aimed to investigate whether the Diminazene Aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, can revert cardiac dysfunction in ischemia reperfusion-induced (I/R) injury in animals and examine the mechanism underlying this effect. Wistar rats systemically received DIZE (1 mg/kg) for thirty days. Cardiac function in isolated rat hearts was evaluated using the Langendorff technique. After I/R, ventricular non-I/R and I/R samples were used to evaluate ATP levels. Mitochondrial function was assessed using cardiac permeabilized fibers and isolated cardiac mitochondria. Cardiac cellular electrophysiology was evaluated using the patch clamp technique. DIZE protected the heart after I/R from arrhythmia and cardiac dysfunction by preserving ATP levels, independently of any change in coronary flow and heart rate. DIZE improved mitochondrial function, increasing the capacity for generating ATP and reducing proton leak without changing the specific citrate synthase activity. The activation of the ACE2 remodeled cardiac electrical profiles, shortening the cardiac action potential duration at 90 % repolarization. Additionally, cardiomyocytes from DIZE-treated animals exhibited reduced sensibility to diazoxide (KATP agonist) and a higher KATP current compared to the controls. DIZE was able to improve mitochondrial function and modulate cardiac electrical variables with a cardio-protective profile, resulting in direct myocardial cell protection from I/R injury.Arctic warming leading to reduced summertime sea-ice is likely to lead to increased local shipping especially along the Northeast Passage near the northern coasts of Norway and Russia, which are shorter than the traditional southerly routes. Here, the regional chemistry-transport model WRF-Chem is used to examine the effects of shipping emissions on levels of air pollutants and deposition fluxes over the Barents Sea both for present-day and future conditions, based on a high growth scenario. read more Present-day shipping emissions are found to have already substantial effects on ozone concentrations, but limited effects on sulphate and nitrate aerosols. Predicted future changes in ozone are also important, particularly in regions with low nitrogen oxide concentrations, and results are sensitive to the way in which diversion shipping is distributed due to non-linear effects on photochemical ozone production. Whilst modest future increases in sulphate and nitrate aerosols are predicted, large enhancements in dry deposition of sulphur dioxide and wet deposition of nitrogen compounds to the Barents Sea are predicted. Such levels of future nitrogen deposition would represent a significant atmospheric source of oceanic nitrogen affecting sensitive marine ecosystems.The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1-5 mm can be released, along with millions of small microplastics in the range of 1-100 μm, and billions of nanoplastics in the range of less then 1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics.Legacy halogenated organic pollutants, including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), remain ubiquitous in the environment and continue to pose potential (eco-)toxicological threats because of their ongoing releases from land-based sources. This study investigated the spatial trends of freely dissolved PCBs and OCPs by polyethylene passive samplers, and provided evidence of their land-use-based sources and ecological risk in an urbanized estuary area of Narragansett Bay. Dissolved Σ29PCB concentrations ranged from 0.01 to 1.37 ng L-1, and exhibited higher concentrations in the upper, more urban/built-up watershed, and in north coastal areas. Major inputs of PCBs were urban stormwater or treated wastewater that might carry past releases of Aroclors, pigment manufacturing byproducts, and volatilization-associated PCBs from ageing buildings from the Narragansett watershed to the bay. The dioxin toxicity equivalent values of Σ5PCBs were 8.6E-03 pg L-1 in water. Dissolved OCP concentrations had similar spatial trends to PCBs and were dominated by DDTs (average 230 pg L-1), followed by chlordanes (average 230 pg L-1), and HCB (average 22 pg L-1). Secondary sources of past usage and historic contamination were expected to re-enter the surface water via atmospheric transport and deposition. The risk quotients of DDE, DDD, DDT and α-Endosulfane showed medium to high ecological risks in the northern area, while chlordane, HCB, oxychlordane, and heptachlor epoxide showed low to negligible risks in all zones. This study presented new insights into the presence, sources and transport of legacy halogenated organic contaminants in an urban estuary's watershed by combining passive samplers and geographic information system (GIS) technology. The approach is promising and could be extended to get better understand of terrestrial pollutant mobilization into estuaries affected by anthropogenic activities.Groundwater nitrate (NO3-) pollution is a worldwide environmental problem. Therefore, identification and partitioning of its potential sources are of great importance for effective control of groundwater quality. The current study was carried out to identify the potential sources of groundwater NO3- pollution and determine their apportionment in different land use/land cover (LULC) types in a traditional agricultural area, Weining Plain, in Northwest China. Multiple hydrochemical indices, as well as dual NO3- isotopes (δ15N-NO3 and δ18O-NO3), were used to investigate the groundwater quality and its influencing factors. LULC patterns of the study area were first determined by interpreting remote sensing image data collected from the Sentinel-2 satellite, then the Bayesian stable isotope mixing model (MixSIAR) was used to estimate proportional contributions of the potential sources to groundwater NO3- concentrations. Groundwater quality in the study area was influenced by both natural and anthropogenic factors, with anthropological impact being more important. The results of LULC revealed that the irrigated land is the dominant LULC type in the plain, covering an area of 576.6 km2 (57.18% of the total surface study area of the plain). On the other hand, the results of the NO3- isotopes suggested that manure and sewage (M&S), as well as soil nitrogen (SN), were the major contributors to groundwater NO3-. Moreover, the results obtained from the MixSIAR model showed that the mean proportional contributions of M&S to groundwater NO3- were 55.5, 43.4, 21.4, and 78.7% in the forest, irrigated, paddy, and urban lands, respectively. While SN showed mean proportional contributions of 29.9, 43.4, 61.5, and 12.7% in the forest, irrigated, paddy, and urban lands, respectively. The current study provides valuable information for local authorities to support sustainable groundwater management in the study region.Toluene is an air pollutant widely used as an organic solvent in industrial production and emitted by fossil fuel combustion, in addition to being used as a drug of abuse. Its toxic effects in the central nervous system have not been well established, and how and which neurons are affected remains unknown. Hence, this study aimed to fill this gap by investigating three central questions 1) How does toluene induce neurotoxicity? 2) Which neurons are affected? And 3) What are the long-term effects induced by airborne exposure to toluene? To this end, a Caenorhabditis elegans model was employed, in which worms at the fourth larval stage were exposed to toluene in the air for 24 h in a vapor chamber to simulate four exposure scenarios. After the concentration-response curve analysis, we chose scenarios 3 (E3 792 ppm) and 4 (E4 1094 ppm) for the following experiments. The assays were performed 1, 48, or 96 h after removal from the exposure environments, and an irreversible reduction in neuron fluorescence and morphologic alterations were observed in different neurons of exposed worms, particularly in the dopaminergic neurons. Moreover, a significant impairment in a dopaminergic-dependent behavior was also associated with negative effects in healthspan endpoints, and we also noted that mitochondria may be involved in toluene-induced neurotoxicity since lower adenosine 5'-triphosphate (ATP) levels and mitochondrial viability were observed. In addition, a reduction of electron transport chain activity was evidenced using ex vivo protocols, which were reinforced by in silico and in vitro analysis, demonstrating toluene action in the mitochondrial complexes. Based on these findings model, it is plausible that toluene neurotoxicity can be initiated by complex I inhibition, triggering a mitochondrial dysfunction that may lead to irreversible dopaminergic neuronal death, thus impairing neurobehavioral signaling.Organic matter from salmon farms has been shown to be assimilated by soft sediment and rocky reef communities within the ecological footprint of salmon farms. Given these findings, another question arises - What other chemicals in salmon feed may be assimilated into wild communities via organic waste from salmon farms? Here we measured a suite of organic contaminants in salmon feed, in organisms used in a controlled feeding experiment, and in reef species collected within the depositional footprint of salmon farms. Gas Chromatography-Tandem Mass Spectrometry was used to quantify trace concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and current-use (CPUs) and historic-use pesticides (HUPs) in salmon feed imported to New Zealand. The effect of assimilation of farm-derived organic matter on contaminant profiles differed among species during the controlled feeding experiment and demonstrated that migration of individuals to a farm-associated site has the potential to increase or decrease organic contaminant concentrations. Concentrations of PCBs in Parapercis colias (blue cod), a highly resident, long-lived fish, were significantly higher at farm sites than at reference sites. While these concentrations were relatively low in a global context, this result presents blue cod as an important candidate for future monitoring of organic contaminants around point sources. PCBs and PBDEs measured in wild marine species were all below limits set by the European Union, whereas concentrations of certain HUPs, specifically dichlorodiphenyltrichloroethane (DDT) and its degradation products and endosulfan, may be of concern as a consequence of alternative anthropogenic activities. Overall, feed imported to New Zealand had relatively low levels of most organic contaminants that, at current levels, are unlikely to result in significant ecological effects to wild communities in adjacent habitats.