Abelshannon0350

Z Iurium Wiki

The aims of our study were to investigate the clinical and audiometric outcome of the surgical treatment of postinflammatory medial meatal fibrosis (PIMMF) and to review the histopathologic changes in the specimens of the fibrotic plug, in order to try to shed light on the pathogenesis of the disease.

The clinical records and the histopathologic specimens of all patients who underwent tympanomeatoplasty for PIMMF at the ENT Clinic of the University of Erlangen between 2006 and 2020 were evaluated retrospectively.

Thirty-four patients (41 primary surgical procedures) made up our study cohort. Of this, 28 cases were managed by means of meatoplasty and 13 cases with tympanomeatoplasty. The mean preoperative air-bone gap (ABG) was 27.8 dB (10-44 dB). Postoperative ABG was significantly improved compared to preoperative values at both short- and long-term follow-ups (

< .001 for both). No significant difference was noted between short-term and long-term ABG (

= .240). An ABG ≤20 dB was achieved in 65.8% of patients (short term) and 50% (long term). The overall rate of revision surgery for restenosis was 29.3% (12/41). https://www.selleckchem.com/ Histopathologic reevaluation of the fibrotic plugs revealed a mosaic of patterns with frequent occurrence of secondary cholesteatoma-like lesions and keloid-like tissue changes. Lichenoid submucosal inflammation and increased ectopic ceruminous gland lobules were seen less frequently.

The moderate long-term outcome of surgical management and the identification of histologic changes with therapeutic implications might pave the way for alternative nonsurgical treatment options.

The moderate long-term outcome of surgical management and the identification of histologic changes with therapeutic implications might pave the way for alternative nonsurgical treatment options.Despite the global biodiversity of terrestrial gastropods and their ecological and economic importance, the genomic basis of ecological adaptation and speciation in land snail taxa is still largely unknown. Here, we combined whole-genome re-sequencing with population genomics to evaluate the historical demography and the speciation process of two closely related species of land snails from western Europe, Candidula unifasciata and C. rugosiuscula. Historical demographic analysis indicated fluctuations in the size of ancestral populations, probably driven by Pleistocene climatic fluctuations. Although the current population distributions of both species do not overlap, our approximate Bayesian computation model selection approach on several speciation scenarios suggested that gene flow has occurred throughout the divergence process until recently. Positively selected genes diverging early in the process were associated with intragenomic and cyto-nuclear incompatibilities, respectively, potentially fostering reproductive isolation as well as ecological divergence. Our results suggested that the speciation between species entails complex processes involving both gene flow and ecological speciation, and that further research based on whole-genome data can provide valuable understanding on species divergence. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.The byssus is a structure unique to bivalves. Byssal threads composed of many proteins extend like tendons from muscle cells, ending in adhesive pads that attach underwater. Crucial to settlement and metamorphosis, larvae of virtually all species are byssate. By contrast, in adults, the byssus is scattered throughout bivalves, where it has had profound effects on morphological evolution and been key to adaptive radiations of epifaunal species. I compare byssus structure and proteins in blue mussels (Mytilus), by far the best characterized, to zebra mussels (Dreissena polymorpha), in which several byssal proteins have been isolated and sequenced. By mapping the adult byssus onto a recent phylogenomic tree, I confirm its independent evolution in these and other lineages, likely parallelisms with common origins in development. While the byssus is superficially similar in Dreissena and Mytilus, in finer detail it is not, and byssal proteins are dramatically different. I used the chromosome-scale D. polymorpha genome we recently assembled to search for byssal genes and found 37 byssal loci on 10 of the 16 chromosomes. Most byssal genes are in small families, with several amino acid substitutions between paralogs. Byssal proteins of zebra mussels and related quagga mussels (D. rostriformis) are divergent, suggesting rapid evolution typical of proteins with repetitive low complexity domains. Opportunities abound for proteomic and genomic work to further our understanding of this textbook example of a marine natural material. A priority should be invasive bivalves, given the role of byssal attachment in the spread of, and ecological and economic damage caused by zebra mussels, quagga mussels and others. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.Mollusca are the second largest and arguably most diverse phylum of the animal kingdom. This is in sharp contrast to our very limited knowledge concerning epigenetic mechanisms including DNA methylation in this invertebrate group. Here, we inferred DNA methylation patterns by analysing the normalized dinucleotide CG content in protein-coding sequences and identified DNA methyltransferases (DNMT1 and 3) in published transcriptomes and genomes of 140 species across all eight classes of molluscs. Given the evolutionary age and morphological diversity of molluscs, we expected to find evidence for diverse methylation patterns. Our inferences suggest that molluscs possess substantial levels of DNA methylation in gene bodies as a rule. Yet, we found deviations from this general picture with regard to (i) the CpG observed/expected distributions indicating a reduction in DNA methylation in certain groups and (ii) the completeness of the DNMT toolkit. Reductions were evident in Caudofoveata, Solenogastres, Polyplacophora, Monoplacophora, as well as Scaphopoda. Heterobranchia and Oegopsida were remarkable as they lacked DNMT3, usually responsible for de novo methylation, yet showed signs of DNA methylation. Our survey may serve as guidance for direct empirical analyses of DNA methylation in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.Bivalves are a diverse mollusc group of economic and ecological importance. An evident resilience to pollution, parasites and extreme environments makes some bivalve species important models for studying adaptation and immunity. Despite substantial progress in sequencing projects of bivalves, information on non-coding genes and gene-regulatory aspects is still lacking. Here, we review the current repertoire of bivalve microRNAs (miRNAs), important regulators of gene expression in Metazoa. We exploited available short non-coding RNA (sncRNA) data for Pinctada martensii, Crassostrea gigas, Corbicula fluminea, Tegillarca granosa and Ruditapes philippinarum, and we produced new sncRNA data for two additional bivalves, the Mediterranean mussel Mytilus galloprovincialis and the blood clam Scapharca broughtonii. link2 We found substantial heterogeneity and incorrect annotations of miRNAs; hence, we reannotated conserved miRNA families using recently established criteria for bona fide microRNA annotation. We found 106 miRNA families missing in the previously published bivalve datasets and 89 and 87 miRNA complements were identified in the two additional species. The overall results provide a homogeneous and evolutionarily consistent picture of miRNAs in bivalves and enable future comparative studies. The identification of two bivalve-specific miRNA families sheds further light on the complexity of transcription and its regulation in bivalve molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.The advent of complete genomic sequencing has opened a window into genomic phenomena obscured by fragmented assemblies. A good example of these is the existence of hemizygous regions of autosomal chromosomes, which can result in marked differences in gene content between individuals within species. While these hemizygous regions, and presence/absence variation of genes that can result, are well known in plants, firm evidence has only recently emerged for their existence in metazoans. Here, we use recently published, complete genomes from wild-caught molluscs to investigate the prevalence of hemizygosity across a well-known and ecologically important clade. We show that hemizygous regions are widespread in mollusc genomes, not clustered in individual chromosomes, and often contain genes linked to transposition, DNA repair and stress response. With targeted investigations of HSP70-12 and C1qDC, we also show how individual gene families are distributed within pan-genomes. link3 This work suggests that extensive pan-genomes are widespread across the conchiferan Mollusca, and represent useful tools for genomic evolution, allowing the maintenance of additional genetic diversity within the population. As genomic sequencing and re-sequencing becomes more routine, the prevalence of hemizygosity, and its impact on selection and adaptation, are key targets for research across the tree of life. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.Genomic structural variation is an important source of genetic and phenotypic diversity, playing a critical role in evolution. The recent availability of a high-quality reference genome for the eastern oyster, Crassostrea virginica, and whole-genome sequence data of samples from across the species range in the USA, provides an opportunity to explore structural variation across the genome of this species. Our analysis shows significantly greater individual-level duplications of regions across the genome than that of most model vertebrate species. Duplications are widespread across all ten chromosomes with variation in frequency per chromosome. The eastern oyster shows a large interindividual variation in duplications as well as particular chromosomal regions with a higher density of duplications. A high percentage of duplications seen in C. virginica lie completely within genes and exons, suggesting the potential for impacts on gene function. These results support the hypothesis that structural changes may play a significant role in standing genetic variation in C. virginica, and potentially have a role in their adaptive and evolutionary success. Altogether, these results suggest that copy number variation plays an important role in the genomic variation of C. virginica. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics broad insights and future directions for a neglected phylum'.

Autoři článku: Abelshannon0350 (Donovan Ratliff)