Abbottcostello2226

Z Iurium Wiki

Remarkably, all modified pectin solutions showed lower viscosity compared to untreated PP solution. Among these PP samples, higher antioxidant activity (103.29-134.22 mmol TE/g FRAP and 646.27-705.25 mmol TE/g ORAC values) was found in the HCT-treated PP. Moreover, the ultra-high pressure and ultrasound modified pectins revealed better emulsifying activity and emulsifying stability than unmodified PP. The results of this study indicated that the PP could be treated to achieve the desired functional application through these three physical modification methods.Enhancing the solubility of rice glutelin in neutral aqueous solution is the prerequisite for the development of rice protein drinks and ingredients. Herein, glutelin was first dissolved in an aqueous solution of pH 12, and then heated at 121 °C for 20 min. The results showed that the solubility of glutelin increased from 2.55 mg/mL to 20.7 mg/mL at pH 7. The size of glutelin aggregates at pH 7 decreased from 900 nm to 400 nm after high temperature treatment (HTT), which was confirmed by atomic force microscopy. The results of small angle X-ray scattering showed that HTT induced the conformational unfolding of glutelin, and the protein in the aggregate was rod like shape as well as the mean square rotation radius decreased from 64.9 to 54.8 Å. Furthermore, Raman spectrum results also agree with the unfolding of glutelin conformation, which was mainly reflected in the changes of tyrosine and tryptophan residues, as well as the decreasing of α-helix content and increasing of β-sheet content. After being freeze-dried, HTT glutelin has a re-solubilization capacity of 15.48 mg/mL in pH 7 aqueous solution, which was superior to that of spray dried glutelin powder (pH 7, 9.19 mg/mL).Herein, a facile wet-spinning strategy was used for the fabrication of mechanically strong all-chitin filaments from an aqueous NaOH solution using β-chitin nanofibers (β-ChNFs). It is hypothesized that to reach high mechanical performance it is important to preserve the crystalline structure of chitin during fabrication. To explore this possibility, β-ChNFs were disintegrated from squid pens by a mild procedure and showed a uniform diameter of 10-25 nm, length of a few microns, and a high aspect ratio of more than 200. An interesting finding was that gel-like β-ChNF filaments were directly formed in aqueous NaOH without using any organic or ionic agents. The gelation of β-ChNFS under alkali treatments contributed to the construction of strong nanonetworks and thus facilitated the formation of high-strength filaments. The resulting all-chitin filaments showed a high tensile strength and Young's modulus of 251.3 ± 12.45 MPa and 12.1 ± 0.72 GPa, respectively, which were further investigated for utilization as flexible sensors. The advantages of this strategy included the lack of use of any toxic solvents and the achievement of high mechanical performance for the all-chitin filaments. We believe that this wet-spinning approach may promote the functional utilization of chitin to develop high-strength filaments in smart textiles, biosensors, and structural reinforcements.Despite many technical challenges in the development of safe and environmentally friendly food packaging paper materials with excellent water and oil resistance using simple methods, producing paper-based functional materials using bio-based polymers is currently an important topic in the food packaging industry. In this study, novel water and oil-resistant coatings for the paper were developed through the combination of sodium alginate (SA), hydroxypropyl methylcellulose (HPMC), polyvinyl butyral (PVB), and hydrophobic silica nanoparticles (HSNPs). To impart oil-repellency to paper, SA and HPMC were first mixed uniformly and coated on the base paper, which was pre-treated with calcium chloride solution. A compact and tough coating layer was formed on paper due to the hydrogen bonding between SA and HPMC molecules, and the crosslinking between SA and Ca2+ ions in the base paper. High water resistance of the paper was achieved through the coating of PVB and HSNPs on top of the coating of SA/HPMC. The final coated paper demonstrated outstanding oil resistance (kit rating 12/12), water resistance (Cobb value 4.23 g/m2), low water vapor transmission rate (100 g/m2·24 h), and improved mechanical properties. This fluorine-free, and biodegradable barrier paper will find excellent applications in the food packaging industry.The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.Silicon (Si) has crucial effects on plant development and stress resistance. Silicon transporters regulate Si absorption, transport, and distribution in plants. In this study, we identified and characterized the Si transporter gene family of moso bamboo (Phyllostachys edulis) and cloned seven putative Si transporter genes. Moso bamboo Si transporters contain conserved functional domains that mediate the accumulation of considerable amounts of Si. The analysis of gene duplication patterns and divergence times suggested that the expansion of the moso bamboo Si transporter family was mainly due to segmental duplications. The expression of moso bamboo Si transporter genes, which varied among organs, was significantly modulated by Si treatments. The subcellular localization analysis showed that Si transporters are plasma membrane proteins. The Si content increased in transgenic Arabidopsis overexpressing PeLsi1-1 or PeLsi1-2, which affected vegetative and reproductive growth. Our single-particle tracking analysis revealed the four diffusion modes of PeLsi1-1 on the plasma membrane. Moreover, the particle velocity, dwell time, and motion range of PeLsi1-1 decreased in response to Si treatments. The results of this study will further clarify the molecular mechanisms underlying Si absorption and accumulation in bamboo plants.In order to achieve preparation of cross-linked (CL) potato starch with the maximum degree of substitution, freezing pre-treatment (FS) in different modes as three days freezing (3D), two freezing-thawing cycles (3D + 3D) and 6 days freezing (6D) were conducted. Thereafter, native, frozen and cross-linked starches were characterized for morphological, structural and pasting properties as well as alkaline and intrinsic viscosity. Regarding obtained result, freezing pre-treatment as 3D + 3D was found to be an efficient method to achieve high level of cross-linking than native and other modes of freezing pre-treatments when exposed to POCl3 reagent. The crystallinity (%) and ratio of 1047/1022 cm-1 increased from 38.6 % and 1.112 (native potato starch; NPS) to 41.6 % and 1.269 (cross-linked native potato starch; CL) and 41.3 and 1.292 (cross-linked freeze- thawed starch 3D + 3D + CL) after being treated with POCl3. 3-Aminobenzamide chemical structure Data obtained by intrinsic viscosity was in line with the power-law model. Cross-linked starch with POCl3 exhibited the lowest k value and the highest n value, implying lower shear-thinning behavior of cross-linked starch after freezing pre-treatment than CL native starch. To sum up, low peak viscosity (determined by RVA) and intrinsic viscosity (by U-tube viscometer) could also explain the high level of cross-linking and low swelling power of 3D + 3D + CL.Soybean soluble polysaccharide (SSPS) was reported to possess the anti-obesity activity and improve metabolic syndrome. Unfortunately, the underlying mechanisms are not well understood. Here, we treated high-fat diet (HFD) Sprague Dawley rats with 250 mg per kg of SSPS, the SSPS treatment significantly decreased their body weight (P less then 0.001), liver index value (P less then 0.01), as well as the concentration levels of Triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-C)), and inflammatory cytokines in the serum. Furthermore, we uncovered 276 differently expressed proteins (P less then 0.05) highly involved in lipid metabolism processes. Additionally, after SSPS treatment, both fatty acid binding protein 5 and 7 were downregulated, consistent with the in vivo results. However, peroxisome proliferator-activated receptor γ expression in liver tissue was up-regulated, contradictory to in vitro results. We deduced that two different lipid metabolism mechanisms exist between in vivo and in vitro. Furthermore, in the in vitro experiments, SSPS exerted a lipid-lowering effect. Altogether, the study's results provide an overview of SSPS-induced changes in the liver proteome, which could help us understand the molecular mechanism by which SSPS alleviates obesity.Silkworm spins silk fibers to make the cocoon to protect the pupa from predators and pathogenic microbes. To understand the defense mechanism of the cocoon, many antimicrobial proteins are currently identified. The functionality of these proteins is studied, including protease inhibitors and seroins. Protease inhibitors are incredibly variable in sequences and domains, and most of them contain multiple pairs of disulfide bonds. Thereby they have stable structures and activities. Seroins have two motifs the proline-rich N-terminal motif and the sequence conserved C-terminal motif. Protease inhibitors mainly play antifungal roles, whereas seroins have broad-spectrum antimicrobial activities against bacteria, fungi and viruses. These antimicrobial proteins show higher abundance in the sericin layers than in the fibroin layer and are more abundant in the outer cocoon layer than in the inner cocoon layer. Besides silk proteins, the silkworm cocoon also contains small amounts of non-protein antimicrobial components such as organic acids, alkaloids, flavonoids, and heterocyclic compounds.

Autoři článku: Abbottcostello2226 (May Refsgaard)