Aagesengram5065
Brillouin light scattering (BLS) microscopy is a well established and powerful technique to study acoustic and magnetic excitations in the frequency domain with sub-micron spatial resolution. Many other spectroscopic techniques have benefited from the introduction of femtosecond laser sources to optically pump and stimulate the sample under investigation. In BLS microscopy, the use of femtosecond lasers as the excitation source introduces several challenges, primarily since the measured frequency shift is small and the signal levels are weak due to the low duty cycle of typical femtosecond lasers. Here we present a method to evade these challenges. A strong enhancement of the weak scattering amplitude on selected modes is observed by pumping the sample with a high repetition rate frequency comb laser source. The laser beam can be focused to the diffraction limit, providing a micron pumping area. We can thus preserve the innate high frequency and spatial resolution of BLS microscopy. Furthermore, we are able to induce a point-like source of mode-selected elementary excitations which propagate away from the pumping spot. We conclude that we have demonstrated frequency comb pumped BLS microscopy as an attractive tool for studies of ultrafast induced laser dynamics directly in the frequency domain.A simple expression of the transverse spatial spin splitting of light-carrying intrinsic orbital angular momentum (IOAM) is theoretically derived for reflections at strong absorbing media surfaces. By introducing an asymmetric spin splitting (ASS) factor, the transverse spatial symmetric spin splitting (SSS) and ASS of an arbitrary polarized vortex beam can be distinguished. Here, the transverse spatial SSS of an elliptically polarized vortex beam with a phase difference of 90° is predicted when the incident angle is close to the pseudo-Brewster angle. Remarkably, the larger transverse spatial SSS reaches 1100 nm for the incident circularly polarized LG beam with l=3. It is noteworthy that the transverse spatial SSS can be flexibly manipulated by changing the polarized angle, meaning it is theoretically possible to realize fully polarization-controllable transverse spatial SSS for elliptically polarized incident vortex beams. These results could potentially be applied to precision polarization metrology and edge-enhanced imaging.Plasmonic metamaterials enable extraordinary manipulation of key constitutive properties of light at a subwavelength scale and thus have attracted significant interest. Here, we report a simple and convenient nanofabrication method for a novel meta-device by glancing deposition of gold into anodic aluminum oxide templates on glass substrates. A methodology with the assistance of ellipsometric measurements to examine the anisotropy and optical activity properties is presented. A tunable polarization conversion in both transmission and reflection is demonstrated. Specifically, giant broadband circular dichroism for reflection at visible wavelengths is experimentally realized by oblique incidence, due to the extrinsic chirality resulting from the mutual orientation of the metamaterials and the incident beam. This work paves the way for practical applications for large-area, low-cost polarization modulators, polarization imaging, displays, and bio-sensing.We design and fabricate a double-layered chiral metamaterial with 4-fold rotational symmetry, which simultaneously exhibits optical rotation and electromagnetically induced transparency (EIT) effects. Using analytical equivalent circuit model and Lorentz's coupled oscillator model, we interpret the physical mechanisms and derive material equations. Importantly, we find that magnetic dipole and electric quadrupole play important roles in optical rotation and keeping the symmetry of the material equations. Our work offers a better understanding of optical rotation in chiral metamaterials, and provides a new and simple approach to combine optical rotation and EIT effects into a single metamaterial.The ability to image through turbid media, such as organic tissues, is a highly attractive prospect for biological and medical imaging. This is challenging, however, due to the highly scattering properties of tissues which scramble the image information. The earliest photons that arrive at the detector are often associated with ballistic transmission, whilst the later photons are associated with complex paths due to multiple independent scattering events and are therefore typically considered to be detrimental to the final image formation process. In this work, we report on the importance of these highly diffuse, "late" photons for computational time-of-flight diffuse optical imaging. In thick scattering materials, >80 transport mean free paths, we provide evidence that including late photons in the inverse retrieval enhances the image reconstruction quality. We also show that the late photons alone have sufficient information to retrieve images of a similar quality to early photon gated data. This result emphasises the importance in the strongly diffusive regime of fully time-resolved imaging techniques.Quantum key distribution (QKD) promises provably secure communications. In order to improve the secret key rate, combining a biased basis choice with the decoy-state method is proposed. Concomitantly, there is a basis-independent detection efficiency condition, which usually cannot be satisfied in a practical system, such as the time-phase encoding. Fortunately, this flaw has been recently removed theoretically and experimentally in the four-intensity decoy-state BB84 QKD protocol using the fact that the expected yields of single-photon states prepared in two bases stay the same for a given measurement basis. However, the security proofs do not fully consider the finite-key effects for general attacks. In this work, we provide the rigorous finite-key security bounds in the universally composable framework for the four-intensity decoy-state BB84 QKD protocol. We build a time-phase encoding system with 200 MHz clock to implement this protocol, in which the real-time secret key rate is more than 60 kbps over 50 km single-mode fiber.Advanced gravitational wave detectors require highly stable, single mode, single frequency and linear polarized laser systems. They have to deliver an output power of ∼200 W and need to provide suitable actuators for further stabilization via fast, low noise feedback control systems. We present such a laser system based on sequential NdYVO4 amplifiers and its integration into a typical laser stabilization environment. We demonstrate robust low noise operation of the stabilized amplifier system at 195 W, which makes it a viable candidate for use in gravitational wave detectors.In this paper, we propose a high-speed volumetric display principle that can solve two problems faced by three-dimensional displays using the parallax stereo principle (namely, the vergence-accommodation conflict and display latency) and we report evaluation results. The proposed display method can update a set of images at different depths at 1000 Hz and is consistent with accommodation. The method selects the depth position in microseconds by combining a high-speed variable-focus lens that vibrates at about 69 kHz and sub-microsecond control of illumination light using an LED. By turning on the LED for only a few hundred nanoseconds when the refractive power of the lens is at a certain value, an image can be presented with this specific refractive power. The optical system is combined with a DMD to form an image at each depth. 3D information consisting of multiple planes in the depth direction can be presented at a high refresh rate by switching the images and changing the refractive power at high speed. A proof-of-concept system was developed to show the validity of the proposed display principle. The system successfully displayed 3D information consisting of six binary images at an update rate of 1000 volume/s.We theoretically investigate strong-filed electron vortices in time-delayed circularly polarized laser pulses by a generalized quantum-trajectory Monte Carlo (GQTMC) model. Vortex interference patterns in photoelectron momentum distributions (PMDs) with various laser parameters can be well reproduced by the semiclassical simulation. The phase difference responsible for the interference structures is analytically identified through trajectory-based analysis and simple-man theory, which reveal the underlying mechanism of electron vortex phenomena for both co-rotating and counter-rotating component. This semiclassical analysis can also demonstrate the influences of laser intensity and wavelength on the number of arms of vortices. Furthermore, we show the influence of the Coulomb effect on the PMDs. Finally, the controlling of the ionization time intervals in the tens to hundreds of attosecond magnitude is qualitatively discussed.For probabilistic amplitude shaping (PAS), we propose a super-symbol transmission method that improves fiber nonlinearity tolerance. 4-Chloro-DL-phenylalanine supplier A simple fiber nonlinearity low-pass filtering model, as well as its interaction with the spectral dip of signal's intensity waveform, is provided to explain the origin of this nonlinear benefit. With 25-GHz-spaced, 26 × 22.5 GBaud dual-polarized PAS-64 quadrature amplitude modulation (QAM) signals transmitted over 12 spans of 80-km standard single mode fiber (SSMF), the proposed method is found to provide ∼0.15-dB gain over the previous finite-blocklength method with intra-DM pairing, ∼0.26-dB gain over finite-blocklength method with inter-DM pairing, and ∼0.44-dB benefit over the traditional method, all with a feasible blocklength at 200.The detection of terahertz photons by using silicon-based devices enabled by visible photons is one of the fundamental ideas of quantum optics. Here, we present a classical detection principle using optical upconversion of terahertz photons to the near-infrared spectral range in the picosecond pulse regime, which finally enables the detection with a conventional sCMOS camera. By superimposing terahertz and optical pump pulses in a periodically poled lithium-niobate crystal, terahertz photons at 0.87 THz are converted to optical photons with wavelengths close to the central pump wavelength of 776 nm. A tunable delay between the pulses helps overlap the pulses and enables time-of-flight measurements. Using a sCMOS camera, we achieve a dynamic range of 47.8 dB with a signal to noise ratio of 23.5 dB at a measurement time of one second, in our current setup.Partial transfer absorption imaging (PTAI) of ultracold atoms allows for repeated and minimally-destructive measurements of an atomic ensemble. Here, we present a reconstruction technique based on PTAI that can be used to piece together the non-uniform spatial profile of high-density atomic samples using multiple measurements. We achieved a thirty-fold increase of the effective dynamic range of our imaging, and were able to image otherwise saturated samples with unprecedented accuracy of both low- and high-density features.Traditional compressive X-ray tomosynthesis uses sequential illumination to interrogate the object, leading to long scanning time and image distortion due to the object variation. This paper proposes a single-snapshot compressive tomosynthesis imaging approach, where the object is simultaneously illuminated by multiple X-ray emitters equipped with coded apertures. Based on rank, intensity and sparsity prior models, a nonlinear image reconstruction framework is established. The coded aperture patterns are optimized based on uniform sensing criteria. Then, a modified split Bregman algorithm is developed to reconstruct the object from the set of nonlinear compressive measurements. It is shown that the proposed method can be used to reduce the inspection time and achieve robust reconstruction with respect to shape variation or motion of objects.