Aagaardsvensson0830
A polarization beam splitter is an important component of modern optical system, especially a splitter that combines the structural flexibility of photonic crystal fiber and the optical modulation of functional material. Thus, this paper presents a compact dual-core photonic crystal fiber polarization beam splitter based on thin layer As2S3. The mature finite element method was utilized to simulate the performance of the proposed splitter. Numerical simulation results indicated that at 1.55 μm, when the fiber device length was 1.0 mm, the x- and y-polarized lights could be split out, the extinction ratio could reach -83.6 dB, of which the bandwidth for extinction ratio better than -20 dB was 280 nm. It also had a low insertion loss of 0.18 dB for the x-polarized light. In addition, it can be completely fabricated using existing processes. The proposed compact polarization beam splitter is a promising candidate that can be used in various optical fields.Nowadays, animal welfare is seen as a 'common good' and a societal expectation. Veterinarians are expected to promote and ensure the welfare of animals under their care by using their scientific knowledge and skills in ethical reasoning and advocacy. Veterinary education must equip veterinary graduates with the necessary competences to fulfil these roles. In 2013, the Federation of Veterinarians of Europe (FVE) and the European Association of Establishment of Veterinary Education (EAEVE) adopted the Day-1 competences on animal welfare science, ethics and law for veterinary undergraduate education after having surveyed European veterinary schools in 2012. In 2019, the FVE carried out a follow-up survey to monitor the evolution of animal welfare teaching in Europe. A total of 82 responses were received, representing 57 faculties from 25 European countries. Overall results showed that the teaching of animal welfare science, ethics and law has increased in response to growing societal needs, and that welfare is more and more internally embedded in the profession, which is reflected in the curriculum. Nevertheless, at least one quarter of European schools still only partially meet the 2013 Day-1 competencies. This indicates the need for greater efforts, both from the EAEVE and from individual schools, to ensure that the teaching of animal welfare across Europe is standardised.Cellulose beads were successfully prepared from waste denim using a dissolution-regeneration approach with ionic liquids as the dissolving solvent. Cellulose beads with different morphologies were achieved by altering the dissolving and coagulating solvents. The morphological differences were quantified by N2 physisorption. The impact of morphology on the cellulose beads' potential application was investigated in the context of drug loading and release. The results show that the fibrous morphology showed a better loading capacity than the globular analogue due to its higher surface area and pore volume.The decision for dairy farmers to invest in automated oestrus detection (AOD) technologies involves the weighing up of the costs and benefits of implementation. In this paper, through a review of the existing literature, we examine the impacts of investment in AOD technologies in relation to the profitability and technical performance of dairy farms. Peer-reviewed articles published between 1970 and 2019 on the investment viability of AOD technologies were collated and analysed. We capture the different measures used in assessing the economic performance of investment in AOD technologies over time which include net present value (NPV), milk production, Benefit-Cost Ratio (BCR), internal rate of return (IRR) and payback period (PBP). The study concludes that investment in AOD technologies is not only worthwhile but also contributes to farm profitability.
This cross-sectional study aimed to explore the microbial composition of the gut and its possible association with the Mediterranean diet (MD) after adjusting for demographic and anthropometric characteristics in a sample of healthy young Italian adults.
Gut microbiota, demographic information, and data on adherence to MD and physical activity (PA) habits were collected in a sample of 140 university students (48.6% males, mean age 22.5 ± 2.9) with a mean body mass index (BMI) of 22.4 ± 2.8 kg/m
(15.2-33.8) and a mean PA level of 3006.2 ± 2973.6 metabolic equivalent (MET)-minutes/week (148-21,090).
A high prevalence of
and
was found in all the fecal samples. Significant dissimilarities in the microbiota composition were found on the basis of MD adherence and PA levels (
= 0.001). At the genus level,
and
were highly abundant in overweight/obese individuals,
and
in participants with lower adherence to MD, and
in subjects with low levels of PA (
= 0.001). A significantly higher abundance of
was shown by individuals with lower BMI, lower MD adherence, and lower PA levels (
= 0.001).
This study contributes to the characterization of the gut microbiome of healthy humans. The findings suggest the role of diet and PA in determining gut microbiota variability.
This study contributes to the characterization of the gut microbiome of healthy humans. The findings suggest the role of diet and PA in determining gut microbiota variability.Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.Laminates with unidirectionally arrayed chopped strands (UACS) are one of the advanced short fiber reinforced polymer composites (SFRP) with significant application prospect, which greatly improves mechanical properties compared to the traditional SFRP, meanwhile ensuring excellent flowability. In practice, composite laminate with an open hole is one of the typical connective components, and it is necessary to clarify the allowable load and damage tolerance performance of notched structures. In the present study, UACS laminates were fabricated using the continuous carbon fiber reinforced polymer (CFRP) prepreg, on which regularly arrayed bi-angled slits were introduced by a commercial numerical control cutter. The tensile strength and strain distribution around the open hole of the notched UACS laminate were experimentally investigated, while the damage progression near the open hole of the notched UACS laminate was analyzed by the finite element method (FEM). The tensile strength of the notched UACS laminate was measured at 298 MPa, which is about 60% of the strength of the unnotched UACS laminate. The simulation results match well with the experimental results, although there is a little overestimate on strength, by about 5% and 7%, for unnotched and notched UACS laminates, respectively. The final critical failure mode for the notched UACS laminate is mainly dominated by the delamination instead of the fiber breakage in the unnotched UACS laminate.Microalgal biomass is a sustainable and valuable source of lipids with omega-3 fatty acids. The efficient extraction of lipids from microalgae requires fast and alternative extraction methods, frequently combined with biomass pre-treatment by different procedures. In this work, Pressurized liquid extraction (PLE) was optimized and compared with traditional lipid extraction methods, Folch and Bligh and Dyer, and with a new Ultrasound Assisted Extraction (UAE) method for lipids from microalgae Isochrysis galbana. To further optimize PLE and UAE, enzymatic pre-treatment of microalga Isochrysis galbana was studied with commercial enzymes Viscozyme and Celluclast. No significant differences were found for lipid yields among different extraction techniques used. However, advanced extraction techniques with or without pre-treatment are a green, fast, and toxic solvent free alternative to traditional techniques. Lipid composition of Isochrysis was determined by HPLC-ELSD and included neutral and polar lipids, showing that each fraction comprised different contents in omega-3 polyunsaturated fatty acids (PUFA). The highest polar lipids content was achieved with UAE (50 °C and 15 min) and PLE (100 °C) techniques. Moreover, the highest omega-3 PUFA (33.2%), eicosapentaenoic acid (EPA) (3.3%) and docosahexaenoic acid (DHA) (12.0%) contents were achieved with the advanced technique UAE, showing the optimized method as a practical alternative to produce valuable lipids for food and nutraceutical applications.Plasma-derived exosomes of head and neck squamous cell carcinoma (HNSCC) patients carry inhibitory factors mediating immune suppression. Separation of tumor-derived exosomes (TEX) and non-TEX may assist in a better understanding of their respective parental cells. Here, we evaluate the impact of TEX or hematopoietic-derived exosomes on immune suppression. We evaluated apoptosis in CD8+ T cells, conversion of CD4+ T cells to regulatory T cells (Treg), and adenosine production by TEX, non-TEX, or total exosomes. Exosome protein cargo was significantly higher in total and CD45(-) exosomes from high stage compared to low stage patients. Furthermore, total and CD45(-) exosomes of high stage patients induced more apoptosis in CD8+ T cells than their low stage counterparts. CD69 suppression, a marker of reduced CD8+ T cell activation, was only mediated by CD45(-) exosomes. All fractions induced Treg differentiation, defined by CD39 expression, but only CD45(-) exosomes showed a stage-dependent conversion. CD45(-) exosomes produced higher adenosine concentrations than CD45(+) exosomes, concluding that adenosine production measured in total exosomes mainly derives from TEX. The presented results show significant induction of immune suppression by TEX in HNSCC. This immunosuppressive effect supports the potential role of exosomes as liquid biomarkers for disease stage and level of immune suppression.Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. ALLN The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80-90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family.