Aagaardlorentsen2543
ia.CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, it was found that null mutations in the dCTCF gene died as pharate adults, which failed to eclose from their pupal case, or shortly after hatching of adults. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears is limited mainly to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not important for the functional activity of dCTCF in vivo.Chemokines are small proteins that are critical for immune function, being primarily responsible for the activation and chemotaxis of leukocytes. As such, many viruses, as well as parasitic arthropods, have evolved systems to counteract chemokine function in order to maintain virulence, such as binding chemokines, mimicking chemokines, or producing analogs of transmembrane chemokine receptors that strongly bind their targets. The focus of this review is the large group of chemokine binding proteins (CBP) with an emphasis on those produced by mammalian viruses. Because many chemokines mediate inflammation, these CBP could possibly be used pharmaceutically as anti-inflammatory agents. In this review, we summarize the structural properties of a diverse set of CBP and describe in detail the chemokine binding properties of the poxvirus-encoded CBP called vCCI (viral CC Chemokine Inhibitor). Finally, we describe the current and emerging capabilities of combining computational simulation, structural analysis, and biochemical/biophysical experimentation to understand, and possibly re-engineer, protein-protein interactions.
The abnormal expression of long non-coding RNA (lncRNA) Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) has been observed in many human cancers and the underlying mechanisms have been well studied. However, the function of OIP5-AS1 in acute kidney injury (AKI) remains unclear.
To explore the role of OIP5-AS1 in the progression of AKI, the cisplatin-induced AKI mouse and cell model were established. To confirm the potential protective effect of OIP5-AS1 during cisplatin-induced AKI, rescue experiments were performed. Targetscan was used to predict the potential targets of miR-144-5p. To further determine whether the effect of miR-144-5p during cisplatin-induced AKI was mediated by PMK2, the recuse experiments using PMK2 overexpressing vector was applied.
OIP5-AS1 was significantly downregulated both in cisplatin-induced AKI mice and human renal tubular cell line HK-2 cells. Moreover, overexpression of OIP5-AS1 efficiently promoted cell growth and reduced cisplatin-induced apoptosis of HK-2 cells. Furthermore, OIP5-AS1 was identified as a sponge of miR-144-5p, and upregulation of miR-144-5p could significantly reverse overexpression of OIP5-AS1-induced protective effect on the damage of cisplatin to HK-2 cells. In addition, pyruvate kinase M2 (PKM2) was found to be a direct target of miR-144-5p, and overexpression of PKM2 efficiently reversed the effect of miR-144-5p mimics on the damage in cisplatin-stimulated HK-2 cells.
OIP5-AS1 reduced the apoptosis of cisplatin-stimulated renal epithelial cells by targeting the miR-144-5p/PKM2 axis, which extended the regulatory network of lncRNAs in cisplatin-induced AKI and also provided a novel therapeutic target for AKI treatment.
OIP5-AS1 reduced the apoptosis of cisplatin-stimulated renal epithelial cells by targeting the miR-144-5p/PKM2 axis, which extended the regulatory network of lncRNAs in cisplatin-induced AKI and also provided a novel therapeutic target for AKI treatment.In light optics, beams with orbital angular momentum (OAM) can be produced by employing a properly-tuned two-cylinder-lens arrangement, also called π/2 mode converter. It is not possible to convey this concept directly to the beam in an electron microscope due to the non-existence of cylinder lenses in commercial transmission electron microscopes (TEMs). A viable work-around are readily-available electron optical elements in the form of quadrupole lenses. In a proof-of-principle experiment in 2012, it has been shown that a single quadrupole in combination with a Hilbert phase-plate produces a spatially-confined, transient vortex mode. Here, an analogue to an optical π/2 mode converter is realized by repurposing a CEOS DCOR probe corrector in an aberration corrected TEM in a way that it resembles a dual cylinder lens using two quadrupoles. In order to verify the presence of OAM in the output beam, a fork dislocation grating is used as an OAM analyser. The possibility to use magnetic quadrupole fields instead of, e.g., prefabricated fork dislocation gratings to produce electron beams carrying OAM enhances the beam brightness by almost an order of magnitude and delivers switchable high-mode purity vortex beams without unwanted side-bands.Six years ago, the Learning Early About Peanut (LEAP) trial findings helped fundamentally shift the paradigm of peanut allergy prevention. Although the results of LEAP are well accepted, policy-makers, caregivers, and clinicians struggle with how best to implement and apply the study's key findings in clinical practice. Differences in guidelines highlight issues related to peanut allergy prevention implementation, including caregiver acceptability, cost, fidelity, feasibility, appropriateness, and adoption. The goals of this rostrum are to review how the LEAP study has informed international peanut allergy prevention policy, as well as to review the strengths and ongoing controversies in peanut allergy prevention implementation.Macrophages play crucial roles in many human disease processes. However, obtaining large numbers of primary cells for study is often difficult. We describe 2D and 3D methods for directing human induced pluripotent stem cells (hiPSCs) into macrophages (iMACs). iMACs generated in 2D culture showed functional similarities to human primary monocyte-derived M2-like macrophages, and could be successfully polarized into a M1-like phenotype. Both M1- and M2-like iMACs showed phagocytic activity and reactivity to endogenous or exogenous stimuli. In contrast, iMACs generated by a 3D culture system showed mixed M1- and M2-like functional characteristics. 2D-iMACs from patients with fibrodysplasia ossificans progressiva (FOP), an inherited disease with progressive heterotopic ossification driven by inflammation, showed prolonged inflammatory cytokine production and higher Activin A production after M1-like polarization, resulting in dampened responses to additional LPS stimulation. These results demonstrate a simple and robust way of creating hiPSC-derived M1- and M2-like macrophage lineages, while identifying macrophages as a source of Activin A that may drive heterotopic ossification in FOP.
Older adults with late-life depression (LLD) often experience incomplete or lack of response to first-line pharmacotherapy. The treatment of LLD could be improved using objective biological measures to predict response. Transcranial magnetic stimulation (TMS) can be used to measure cortical excitability, inhibition, and plasticity, which have been implicated in LLD pathophysiology, and associated with brain stimulation treatment outcomes in younger adults with depression. TMS measures have not yet been investigated as predictors of treatment outcomes in LLD, or pharmacotherapy outcomes in adults of any age with depression.
We assessed whether pre-treatment single-pulse and paired-pulse TMS measures, combined with clinical and demographic measures, predict venlafaxine treatment response in 76 outpatients with LLD. We compared the predictive performance of machine learning models including or excluding TMS predictors.
Two single-pulse TMS measures predicted venlafaxine response cortical excitability (neurto pharmacotherapy in LLD. Future studies are needed to confirm these findings and determine whether combining TMS predictors with other biomarkers further improves the accuracy of predicting LLD treatment outcome.Spatial neglect is a neuropsychological syndrome characterized by a failure to orient, perceive, and act toward the contralesional side of the space after brain injury. Neglect is one of the most frequent and disabling neuropsychological syndromes following right-hemisphere damage, often persisting in the chronic phase and responsible for a poor functional outcome at hospital discharge. Different rehabilitation approaches have been proposed over the past 60 years, with a variable degree of effectiveness. In this point-of-view article, we describe a new rehabilitation technique for spatial neglect that directly targets brain activity and pathological physiological processes namely, neurofeedback (NFB) with real-time brain imaging methodologies. In recent proof-of-principle studies, we have demonstrated the potential of this rehabilitation technique. Using real-time functional MRI (rt-fMRI) NFB in chronic neglect, we demonstrated that patients are able to upregulate their right visual cortex activity, a response that is otherwise reduced due to losses in top-down attentional signals. Using real-time electroencephalography NFB in patients with acute or chronic condition, we showed successful regulation with partial restoration of brain rhythm dynamics over the damaged hemisphere. Both approaches were followed by mild, but encouraging, improvement in neglect symptoms. NFB techniques, by training endogenous top-down modulation of attentional control on sensory processing, might induce sustained changes at both the neural and behavioral levels, while being non-invasive and safe. Saracatinib However, more properly powered clinical studies with control groups and longer follow-up are needed to fully establish the effectiveness of the techniques, identify the most suitable candidates, and determine how the techniques can be optimized or combined in the context of rehabilitation.
Sleep disturbance and fatigue are highly prevalent after acquired brain injury (ABI) and are associated with poor functional outcomes. Cognitive behavioural therapy (CBT) is a promising treatment for sleep and fatigue problems after ABI, although comparison with an active control is needed to establish efficacy.
We compared CBT for sleep disturbance and fatigue (CBT-SF) with a health education (HE) intervention to control for non-specific therapy effects.
In a parallel-group, pilot randomised controlled trial, 51 individuals with traumatic brain injury (n=22) and stroke (n=29) and clinically significant sleep and/or fatigue problems were randomised 21 to 8 weeks of a CBT-SF (n=34) or HE intervention (n=17), both adapted for cognitive impairments. Participants were assessed at baseline, post-treatment, and 2 and 4 months post-treatment. The primary outcome was the Pittsburgh Sleep Quality Index; secondary outcomes included measures of fatigue, sleepiness, mood, quality of life, activity levels, self-efficacy and actigraphy sleep measures.