Aagaardfaircloth5752

Z Iurium Wiki

Snail's embryotoxicity test is a suitable approach for toxicity assay of traditional and emerging pollutants, environmental risk assessment, as well as screening and development of new molluscicides. Among the snail species, Biomphalaria spp. has been indicated as a promising model system for developing standardized test protocols for assessing the chemical toxicity using early developmental stages. Thus, the current study aimed to review the data available in the scientific literature concerning the experimental approach, type of chemicals and the response of multiple biomarkers (survival, hatching rate, development delays, morphological and behavior changes) in snail embryos applied in toxicity tests. Revised data showed that the use of Biomphalaria embryos to assess chemical toxicity began in 1962. Snail's embryotoxicity test was applied mainly for analyzing the toxicity and development of new molluscicides, while its use in ecotoxicological studies is emerging. Biomphalaria glabrata was the main species analyzed. Embryos exposed to chemicals showed bioaccumulation, mortality, hatching inhibition, development delays, and morphological malformations, which were classified into four categories (hydropic, shell, cephalic and unspecified malformations). Besides, research gaps and recommendations for future research are indicated. Overall, the results showed that the Biomphalaria embryotoxicity test (BET) is a suitable tool for toxicity and health risk assessment.The Murray River is Australia's longest river, draining the continent's largest exoreic catchment. The river is Australia's most economically valuable, but is highly degraded by water extraction. The Murray River's terminal lakes, Lakes Alexandrina and Albert, formed following the mid-Holocene marine transgression. These lakes are part of one of the most ecologically important wetland ecosystems on the Australian continent and are recognised as internationally significant by the Ramsar Convention. As a result of upstream water extraction, the Lower Lakes are threatened by rising salinity. To combat this threat, water is allocated to maintain the Lower Lakes as freshwater ecosystems. This practice is part of the Murray-Darling Basin Plan, one of the largest environmental water allocation plans in the world. The water allocations and the natural history of the Lower Lakes are the subject of academic and public debate, since the water would otherwise be used for consumptive purposes, particularly irrigated agriculture, upstream. Recent modelling postulated that the lakes were saline for much of the period between 8500 and 5000 years ago. However, using new sedimentary diatom and hydrodynamic modelling evidence, we demonstrate that the Lower Lakes were fresh for most of this time, particularly after 7200 years ago. Elevated Murray River discharge between 7200 and 6600 years ago prevented sea water ingress, despite sea levels +1 m higher than present. After 6600 years ago, the lakes remained predominately fresh. Current management is, therefore, consistent with the lakes' history before European colonisation.Phosphorus (P) is an essential macronutrient for all living organisms. Despite a diversity of P compounds in the environment, orthophosphate is the most bioavailable form of P. Remineralization of complex P molecules (e.g., organic P and phosphoanhydrides) into orthophosphate is traditionally considered to be carried out primarily by enzymes. Natural minerals are recently viewed to be abiotic catalysts (as compared to the organic phosphatases) to facilitate the cleavage of terminal P-O-C/P bonds and remineralization of complex P compounds. However, quantitative comparison between biotic and abiotic remineralization pathways of complex P molecules is still missing, impeding our capability to assess the importance and contribution of abiotic P remineralization in the environment. This study compares the hydrolysis rates of six organic phosphates and three inorganic phosphoanhydrides by representative enzymes (acid and alkaline phosphatases) and natural oxide minerals (hematite, birnessite, and boehmite). The results show that enzymes and minerals have different substrate preferences. selleck Specifically, alkaline phosphatase hydrolyzes phosphate monoesters faster than phosphoanhydrides, whereas acid phosphatase and minerals show higher hydrolysis rates toward phosphoanhydrides than phosphate monoesters. Although the hydrolysis rates by enzymes (~μM hr-1) are orders of magnitude higher than those by minerals (~μM d-1), normalization of the rates by the natural abundance of enzymes and minerals leads to comparable contributions of both processes in soils and sediments. These results highlight the significance of natural minerals in the remineralization of complex P compounds, a process that was traditionally overlooked but with important implications for constraining P biogeochemical cycling in the environment.The evolution of the behaviour of the Cannabis taxon in the Region of Murcia, Spain, has been analysed (in the cities of Cartagena, 1993-2020; Murcia, 2010-2020; and Lorca, 2010-2020). An attempt has been made to establish the origin of Cannabis pollen in this region to determine whether it is transported locally or from long distances based on air mass origins. Cannabis is an herbaceous, normally dioecious and anemophilous plant, which produces large quantities of pollen grains. It has been widely used for fibre (hemp), bird food (hempseed), essential oils and narcotics. The origin of Cannabis pollen grains has been established by calculating back trajectories at the altitudes of 750, 1500 and 2500 m above mean sea level (m amsl); 350, 500 and 650 m amsl; and 10, 100 and 250 m amsl, using the HYSPLIT model. Considering this data, 29 days of Cannabis pollen potentially originating in Africa were identified in Cartagena, 19 days in Murcia and 15 days in Lorca. Of the remaining days, the air mass back trajectories showed local or regional pollen origins. These were 83 days in Cartagena, 61 days in Murcia and 57 days in Lorca. The presence of Cannabis in the bioaerosol of the Region of Murcia is irregular, and it is considered a minority pollen type. However, from 2017 to 2020, concentrations increased, with a positive and significant trend of 90% in the Annual Pollen Integral. The pollen season can be defined between June and August. This increase in the concentration of Cannabis pollen grains during this period coincides with an increase in local transport, suggesting the possibility of increased Cannabis cultivation in the study area.Selenium (Se) is an essential trace element for life. Se reduction has attracted much attention in the microbial Se cycle, but there is less evidence for Se oxidation. In particular, it is unknown whether microorganisms oxidise organic Se(-II). In this study, four strains of bacteria, namely Dyella spp. LX-1 and LX-66, and Rhodanobacter spp. LX-99 and LX-100, isolated from seleniferous soil, were involved in the oxidation of selenomethionine (SeMet), selenocystine (SeCys2), selenourea and Se(0) to selenite (Se(IV)) in pure cultures. The oxidation rates of organic Se were more rapidly than those of Se(0) in liquid media. Then Se(0) and SeMet were used as examples, microbial oxidation was the predominant process for both additional Se(0) and SeMet in sterilised alkaline or acidic soils. The Se(IV) concentrations were significantly higher at pH 8.56 than at pH 5.25. In addition, water-soluble Se (SOLSe) and exchangeable and carbonate-bound Se (EXC-Se) fractions increased dramatically with these four Se-oxidising bacteria in unsterilised seleniferous soil. To our knowledge, this is the first study to find that various bacteria are involved in the oxidation of organic Se to Se oxyanions, bridging the gap of Se redox in the Se biogeochemical cycle.Chlorophyll fluorescence-based method shows great potentials for on-site assessing the vitality of algae in treated ship's ballast water. However, there is very limited information on the mechanism of chlorophyll fluorescence in photosystem II (PSII) after the NaClO treatment. In this paper, the effects of NaClO treatments with five concentrations (0.01, 0.04, 0.08, 0.12 and 0.15 mg/L) and treating periods (6, 24 and 48 h) on the chlorophyll fluorescence kinetics and spectra of Chlorella vulgaris (C. vulgaris) and Platymonas helgolandica (P. helgolandica) were investigated. Experimental results showed that both exposure time and dose were important factors that affect the toxicity of NaClO to microalgae. Further analyses showed that the maximum photochemical quantum yield of PSII, photochemical quenching and yield decreased rapidly with the increase in NaClO concentrations in the range of 0.04 mg/L to 0.15 mg/L, suggesting that NaClO seriously inhibited PSII reaction centers of algae. In addition, the maxima value of fluorescence at excitation wavelength still appeared near 437 nm and 468 nm under NaClO stress, pointing to the pigments for fluorescence produced by algae were mainly chlorophyll a and chlorophyll b antenna. As compared to chlorophyll a, the relative fluorescence intensity of chlorophyll b decreased significantly in the all of NaClO treatments. According to the fluorescence emission spectra, treatment of NaClO resulted in a shift of the maximum peak of C. vulgaris and P. helgolandica from 685.2 nm to 681.9 nm and 685.2 nm to 680.5 within 6 h, respectively. This indicates that the structure of antenna light-absorbing pigments of PSII changed under NaClO stress. These results revealed that the chlorophyll fluorescence mechanism in PSII of damaged microalgae occurred variation, which was important for the reliable application of on-site analysis of ballast water indicator based on chlorophyll fluorescence detection.Phosphate adsorption using metal-based biochar has awakened much attention and triggered extensive research. In this study, novel Ca/Fe-rich biochars were prepared via a one-step process of pyrolyzing paper mill sludge (PMS) at various temperatures (300, 500, 700, and 800 °C) under a CO2 atmosphere for phosphate removal. Batch adsorption experiments showed that the biochar obtained at 800 °C (PB-800), which could be easily separated magnetically, exhibited the best phosphate adsorption capacity in a wide range of solution pH (5-11). Based on the Langmuir model, the maximum phosphate adsorption capacity for PB-800 was 17.33 mg/g. Besides, the effects of ambient temperature as well as coexisting ions on phosphate removal were also investigated. Kinetic and thermodynamic analysis revealed that chemisorption dominated the adsorption process. The calcium carbonate and ferric salts in the sludge were converted into CaO and Fe3O4 through pyrolysis at 800 °C. The CaO inherent in PB-800 was proved to serve as active sites for the chemical precipitation, showing its synergistic effect with iron oxide compounds (i.e., Fe3O4, α-Fe2O3) on phosphate removal through chemical precipitation, ligand exchange, and complexation. This study not only provides a feasible waste-to-wealth strategy for converting PMS into a Ca/Fe-rich magnetic biochar that can be used as an effective phosphate adsorbent, but also offers new insights into the synergistic effect of calcium and iron species for the adsorption of phosphate using biochar.

Autoři článku: Aagaardfaircloth5752 (Rahbek McCullough)