Aaenwhite0086

Z Iurium Wiki

ropherogram for position 1139 having nucleotide R could be used for B. anthracis identification and not the consensus sequence from base caller. The canSNP results indicated that the anthrax outbreak among cattle was caused by B. find more anthracis of A.Br.Aust94 sub-lineage.

The analysis of 16S rDNA sequences reiterated the earlier findings that visual inspection of electropherogram for position 1139 having nucleotide R could be used for B. anthracis identification and not the consensus sequence from base caller. The canSNP results indicated that the anthrax outbreak among cattle was caused by B. anthracis of A.Br.Aust94 sub-lineage.

Genetic improvement of fillet quality attributes is a priority of the aquaculture industry. Muscle composition impacts quality attributes such as flavor, appearance, texture, and juiciness. Fat and moisture make up about ~ 80% of the tissue weight. The genetic architecture underlying the fat and moisture content of the muscle is still to be fully explored in fish. A 50 K gene transcribed SNP chip was used for genotyping 789 fish with available phenotypic data for fat and moisture content. Genotyped fish were obtained from two consecutive generations produced in the National Center for Cool and Cold Water Aquaculture (NCCCWA) growth-selective breeding program. Estimates of SNP effects from weighted single-step GBLUP (WssGBLUP) were used to perform genome-wide association (GWA) analysis to identify quantitative trait loci (QTL) associated with the studied traits.

Using genomic sliding windows of 50 adjacent SNPs, 137 and 178 SNPs were identified as associated with fat and moisture content, respectively. Chromosomes 19 and 29 harbored the highest number of SNPs explaining at least 2% of the genetic variation in fat and moisture content. A total of 61 common SNPs on chromosomes 19 and 29 affected the aforementioned traits; this association suggests common mechanisms underlying intramuscular fat and moisture content. Additionally, based on single-marker GWA analyses, 8 and 24 SNPs were identified in association with fat and moisture content, respectively.

SNP-harboring genes were primarily involved in lipid metabolism, cytoskeleton remodeling, and protein turnover. This work provides putative SNP markers that could be prioritized and used for genomic selection in breeding programs.

SNP-harboring genes were primarily involved in lipid metabolism, cytoskeleton remodeling, and protein turnover. This work provides putative SNP markers that could be prioritized and used for genomic selection in breeding programs.

Alzheimer's disease (AD) is a progressive neuro-degenerative disease with a major manifestation of dementia. MicroRNAs were reported to regulate the transcript expression in patients with Alzheimer's disease (AD). In this study, we investigated the roles of miR-138, a brain-enriched miRNA, in the AD cell model.

The targets of miRNA-138 was predicted by bioinformatic analysis. The expression levels of DEK at both mRNA and protein levels were determined by qRT-PCR and Western blot, respectively. Luciferase assays were carried out to examine cell viabilities. Hoechst 33258 staining was used to detect cell apoptosis.

Our results demonstrated that the expression levels of miR-138 were increased in AD model, and DEK was a target of miR-138. Overexpression of miR-138 in SH-SY5Y cells obviously down-regulated the expression of DEK in SH-SY5Y cells, resulting in the inactivation of AKT and increased expression levels of proapoptotic caspase-3. MiR-138 mediated-suppression of DEK increased the susceptibility of cell apoptosis.

MicroRNA-138 promotes cell apoptosis of SH-SY5Y by targeting DEK in SH-SY5Y AD cell model. The regulation of miR-138 may contribute to AD via down-regulation of the DEK/AKT pathway.

MicroRNA-138 promotes cell apoptosis of SH-SY5Y by targeting DEK in SH-SY5Y AD cell model. The regulation of miR-138 may contribute to AD via down-regulation of the DEK/AKT pathway.

Chloroplast genome sequence data is very useful in studying/addressing the phylogeny of plants at various taxonomic ranks. However, there are no empirical observations on the patterns, directions, and mutation rates, which are the key topics in chloroplast genome evolution. In this study, we used Calycanthaceae as a model to investigate the evolutionary patterns, directions and rates of both nucleotide substitutions and structural mutations at different taxonomic ranks.

There were 2861 polymorphic nucleotide sites on the five chloroplast genomes, and 98% of polymorphic sites were biallelic. There was a single-nucleotide substitution bias in chloroplast genomes. A→T or T→A (2.84%) and G→C or C→G (3.65%) were found to occur significantly less frequently than the other four transversion mutation types. Synonymous mutations kept balanced pace with nonsynonymous mutations, whereas biased directions appeared between transition and transversion mutations and among transversion mutations. Of the structural mutations, indels and repeats had obvious directions, but microsatellites and inversions were non-directional. Structural mutations increased the single nucleotide mutations rates. The mutation rates per site per year were estimated to be 0.14-0.34 × 10

for nucleotide substitution at different taxonomic ranks, 0.64 × 10

for indels and 1.0 × 10

for repeats.

Our direct counts of chloroplast genome evolution events provide raw data for correctly modeling the evolution of sequence data for phylogenetic inferences.

Our direct counts of chloroplast genome evolution events provide raw data for correctly modeling the evolution of sequence data for phylogenetic inferences.

Studies of leaf shape development and plant stature have made important contributions to the fields of plant breeding and developmental biology. The optimization of leaf morphology and plant height to improve lodging resistance and photosynthetic efficiency, increase planting density and yield, and facilitate mechanized harvesting is a desirable goal in Brassica napus.

Here, we investigated a B. napus germplasm resource exhibiting up-curled leaves and a semi-dwarf stature. In progeny populations derived from NJAU5737 and Zhongshuang 11 (ZS11), we found that the up-curled leaf trait was controlled by a dominant locus, BnUC2. We then fine mapped the BnUC2 locus onto an 83.19-kb interval on chromosome A05 using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. We further determined that BnUC2 was a major plant height QTL that explained approximately 70% of the phenotypic variation in two BC

F

family populations derived from NJAU5737 and ZS11. This result implies that BnUC2 was also responsible for the observed semi-dwarf stature.

Autoři článku: Aaenwhite0086 (Broberg Donahue)